Computational methods for discovering structural variation with next-generation sequencing

被引:1
|
作者
Medvedev, Paul [1 ]
Stanciu, Monica [1 ]
Brudno, Michael [1 ,2 ,3 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[2] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada
[3] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
关键词
COPY-NUMBER VARIATION; SEGMENTAL DUPLICATIONS; SHORT-READ; POLYMORPHISM; VARIANTS; SNPS;
D O I
10.1038/NMETH.1374
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions.
引用
收藏
页码:S13 / S20
页数:8
相关论文
共 50 条
  • [1] Computational methods for discovering structural variation with next-generation sequencing
    Medvedev P.
    Stanciu M.
    Brudno M.
    [J]. Nature Methods, 2009, 6 (Suppl 11) : S13 - S20
  • [2] Structural variation discovery with next-generation sequencing
    Gao, Jingyang
    Qi, Fei
    Guan, Rui
    [J]. 2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 709 - 711
  • [3] Structural variation discovery with next-generation sequencing
    Pinosio, S.
    Marroni, F.
    Jorge, V.
    Faivre-Rampant, P.
    Felice, N.
    Di Centa, E.
    Bastien, C.
    Cattonaro, F.
    Morgante, M.
    [J]. FEBS JOURNAL, 2011, 278 : 82 - 82
  • [4] Computational Methods in Microbe Detection Using Next-Generation Sequencing
    Zhou Zi-Han
    Peng Shao-Liang
    Bo Xiao-Chen
    Li Fei
    [J]. PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2017, 44 (01) : 58 - 69
  • [5] Discovering genetic polymorphisms in next-generation sequencing data
    Imelfort, Michael
    Duran, Chris
    Batley, Jacqueline
    Edwards, David
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2009, 7 (04) : 312 - 317
  • [6] Computational methods and translational applications for targeted next-generation sequencing platforms
    Luthra, Anisha
    Mastrogiacomo, Brooke
    Smith, Shaleigh A.
    Chakravarty, Debyani
    Schultz, Nikolaus
    Sanchez-Vega, Francisco
    [J]. GENES CHROMOSOMES & CANCER, 2022, 61 (06): : 322 - 331
  • [7] APPLICATIONS OF NEXT-GENERATION SEQUENCING Genome structural variation discovery and genotyping
    Alkan, Can
    Coe, Bradley P.
    Eichler, Evan E.
    [J]. NATURE REVIEWS GENETICS, 2011, 12 (05) : 363 - 375
  • [8] Next-generation DNA sequencing methods
    Mardis, Elaine R.
    [J]. ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2008, 9 : 387 - 402
  • [9] Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data
    Lee, Haeun
    Min, Jun Won
    Mun, Seyoung
    Han, Kyudong
    [J]. LIFE-BASEL, 2022, 12 (10):
  • [10] Benchmarking of computational error-correction methods for next-generation sequencing data
    Keith Mitchell
    Jaqueline J. Brito
    Igor Mandric
    Qiaozhen Wu
    Sergey Knyazev
    Sei Chang
    Lana S. Martin
    Aaron Karlsberg
    Ekaterina Gerasimov
    Russell Littman
    Brian L. Hill
    Nicholas C. Wu
    Harry Taegyun Yang
    Kevin Hsieh
    Linus Chen
    Eli Littman
    Taylor Shabani
    German Enik
    Douglas Yao
    Ren Sun
    Jan Schroeder
    Eleazar Eskin
    Alex Zelikovsky
    Pavel Skums
    Mihai Pop
    Serghei Mangul
    [J]. Genome Biology, 21