Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data

被引:3
|
作者
Lee, Haeun [1 ]
Min, Jun Won [2 ]
Mun, Seyoung [3 ,4 ]
Han, Kyudong [1 ,3 ,4 ,5 ]
机构
[1] Dankook Univ, Dept Bioconvergence Engn, Yongin 16890, South Korea
[2] Dankook Univ, Dept Surg, Coll Med, Cheonan 31116, South Korea
[3] Dankook Univ, Coll Sci & Technol, Dept Microbiol, Cheonan 31116, South Korea
[4] Dankook Univ, Ctr Bio Med Engn Core Facil, Cheonan 31116, South Korea
[5] HuNbiome Co Ltd, R&D Ctr, Seoul 08507, South Korea
来源
LIFE-BASEL | 2022年 / 12卷 / 10期
基金
新加坡国家研究基金会;
关键词
transposable elements; retrotransposons; next-generation sequencing (NGS); computational tools; HUMAN LINE-1; STRUCTURAL VARIATION; TRANSPOSABLE ELEMENTS; ALU RETROTRANSPOSONS; EVOLUTIONARY HISTORY; MOBILE ELEMENTS; SVA ELEMENTS; GENOME; INSERTION; DISCOVERY;
D O I
10.3390/life12101583
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Computational Methods in Microbe Detection Using Next-Generation Sequencing
    Zhou Zi-Han
    Peng Shao-Liang
    Bo Xiao-Chen
    Li Fei
    [J]. PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2017, 44 (01) : 58 - 69
  • [2] Benchmarking of computational error-correction methods for next-generation sequencing data
    Mitchell, Keith
    Brito, Jaqueline J.
    Mandric, Igor
    Wu, Qiaozhen
    Knyazev, Sergey
    Chang, Sei
    Martin, Lana S.
    Karlsberg, Aaron
    Gerasimov, Ekaterina
    Littman, Russell
    Hill, Brian L.
    Wu, Nicholas C.
    Yang, Harry
    Hsieh, Kevin
    Chen, Linus
    Littman, Eli
    Shabani, Taylor
    Enik, German
    Yao, Douglas
    Sun, Ren
    Schroeder, Jan
    Eskin, Eleazar
    Zelikovsky, Alex
    Skums, Pavel
    Pop, Mihai
    Mangul, Serghei
    [J]. ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [3] Benchmarking of computational error-correction methods for next-generation sequencing data
    Keith Mitchell
    Jaqueline J. Brito
    Igor Mandric
    Qiaozhen Wu
    Sergey Knyazev
    Sei Chang
    Lana S. Martin
    Aaron Karlsberg
    Ekaterina Gerasimov
    Russell Littman
    Brian L. Hill
    Nicholas C. Wu
    Harry Taegyun Yang
    Kevin Hsieh
    Linus Chen
    Eli Littman
    Taylor Shabani
    German Enik
    Douglas Yao
    Ren Sun
    Jan Schroeder
    Eleazar Eskin
    Alex Zelikovsky
    Pavel Skums
    Mihai Pop
    Serghei Mangul
    [J]. Genome Biology, 21
  • [4] Benchmarking of computational error-correction methods for next-generation sequencing data
    Mitchell, Keith
    Brito, Jaqueline J.
    Mandric, Igor
    Wu, Qiaozhen
    Knyazev, Sergey
    Chang, Sei
    Martin, Lana S.
    Karlsberg, Aaron
    Gerasimov, Ekaterina
    Littman, Russell
    Hill, Brian L.
    Wu, Nicholas C.
    Yang, Harry Taegyun
    Hsieh, Kevin
    Chen, Linus
    Littman, Eli
    Shabani, Taylor
    Enik, German
    Yao, Douglas
    Sun, Ren
    Schroeder, Jan
    Eskin, Eleazar
    Zelikovsky, Alex
    Skums, Pavel
    Pop, Mihai
    Mangul, Serghei
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [5] Computational classification of microRNAs in next-generation sequencing data
    Riback, Joshua
    Hatzigeorgiou, Artemis G.
    Reczko, Martin
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2010, 125 (3-6) : 637 - 642
  • [6] Computational classification of microRNAs in next-generation sequencing data
    Joshua Riback
    Artemis G. Hatzigeorgiou
    Martin Reczko
    [J]. Theoretical Chemistry Accounts, 2010, 125 : 637 - 642
  • [7] Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications
    Arora, Itika
    Tollefsbol, Trygve O.
    [J]. METHODS, 2021, 187 : 92 - 103
  • [8] Computational methods for discovering structural variation with next-generation sequencing
    Medvedev, Paul
    Stanciu, Monica
    Brudno, Michael
    [J]. NATURE METHODS, 2009, 6 (11) : S13 - S20
  • [9] Computational methods for discovering structural variation with next-generation sequencing
    Medvedev P.
    Stanciu M.
    Brudno M.
    [J]. Nature Methods, 2009, 6 (Suppl 11) : S13 - S20
  • [10] SPARSE SIGNAL RECOVERY METHODS FOR VARIANT DETECTION IN NEXT-GENERATION SEQUENCING DATA
    Banuelos, Mario
    Almanza, Rubi
    Adhikari, Lasith
    Sindi, Suzanne
    Marcia, Roummel F.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 864 - 868