A skew-symmetric property of rigid-body systems

被引:1
|
作者
Lian, KY [1 ]
Wang, LS
Fu, LC
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Chungli, Taiwan
[2] Natl Taiwan Univ, Inst Appl Mech, Taipei, Taiwan
[3] Natl Taiwan Univ, Dept Elect Engn, Taipei 10764, Taiwan
关键词
rigid-body dynamics; rotation matrix; Euler-Lagrange equation; globally valid dynamics; skew-symmetric property;
D O I
10.1016/S0167-6911(97)00110-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The configuration space for the attitude of a vehicle can be modeled as SO(3), namely the rotation matrix group. This work investigates the globally valid dynamics of natural Lagrangian systems and gyroscopic systems with configuration space including SO(3). The dynamics is derived by using the global representations of jet bundles of SO(3). A skew-symmetric property associated with the systems can be then established. Such property can be used in many applications such as the adaptive controller design. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [31] SKEW-SYMMETRIC OPERATORS AND REFLEXIVITY
    Benhida, Chafiq
    Klis-Garlicka, Kamila
    Ptak, Marek
    [J]. MATHEMATICA SLOVACA, 2018, 68 (02) : 415 - 420
  • [32] PFAFFIANS AND SKEW-SYMMETRIC MATRICES
    HEYMANS, P
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1969, 19 : 730 - &
  • [33] Multivariate skew-symmetric distributions
    Gupta, AK
    Chang, FC
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (05) : 643 - 646
  • [34] COMPOUNDS OF SKEW-SYMMETRIC MATRICES
    MARCUS, M
    YAQUB, A
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (03): : 473 - &
  • [35] PRODUCTS OF SKEW-SYMMETRIC MATRICES
    LAFFEY, TJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 68 (JUL) : 249 - 251
  • [36] Commutators of skew-symmetric matrices
    Bloch, AM
    Iserles, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (03): : 793 - 801
  • [37] Dynamics of Holonomic Rigid-Body Systems
    Yu. M. Andreev
    O. K. Morachkovskii
    [J]. International Applied Mechanics, 2005, 41 : 817 - 824
  • [38] Least-square Solutions for Inverse Problem of Skew-symmetric Orthogonal Skew-symmetric Matrices
    Meng, Guo-Yan
    Liao, An-Ping
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 189 - 192
  • [39] Dynamics of holonomic rigid-body systems
    Andreev, YM
    Morachkovskii, OK
    [J]. INTERNATIONAL APPLIED MECHANICS, 2005, 41 (07) : 817 - 824
  • [40] SUMS OF ORTHOGONAL, SYMMETRIC, AND SKEW-SYMMETRIC MATRICES
    de la Cruz, Ralph john
    Paras, Agnes
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 655 - 660