Inference-based assessment of parameter identifiability in nonlinear biological models

被引:11
|
作者
Daly, Aidan C. [1 ]
Gavaghan, David [1 ]
Cooper, Jonathan [2 ]
Tavener, Simon [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford OX1 3QD, England
[2] UCL, Res IT Serv, Gower St, London WC1E 6BT, England
[3] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
identifiability; experimental design; inverse sensitivity; Markov chain Monte Carlo; approximate Bayesian computation; DRUG CARDIOTOXICITY;
D O I
10.1098/rsif.2018.0318
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As systems approaches to the development of biological models become more mature, attention is increasingly focusing on the problem of inferring parameter values within those models from experimental data. However, particularly for nonlinear models, it is not obvious, either from inspection of the model or from the experimental data, that the inverse problem of parameter fitting will have a unique solution, or even a non-unique solution that constrains the parameters to lie within a plausible physiological range. Where parameters cannot be constrained they are termed 'unidentifiable'. We focus on gaining insight into the causes of unidentifiability using inference-based methods, and compare a recently developed measure-theoretic approach to inverse sensitivity analysis to the popular Markov chain Monte Carlo and approximate Bayesian computation techniques for Bayesian inference. All three approaches map the uncertainty in quantities of interest in the output space to the probability of sets of parameters in the input space. The geometry of these sets demonstrates how unidentifiability can be caused by parameter compensation and provides an intuitive approach to inference- based experimental design.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Parameter identifiability of nonlinear biological systems
    Saccomani, M
    Audoly, S
    Bellu, G
    D'Angiò, L
    [J]. POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 87 - 93
  • [2] Parameter Identifiability for Nonlinear LPV Models
    Srinivasarengan, Krishnan
    Ragot, Jose
    Aubrun, Christophe
    Maquin, Didier
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (02) : 255 - 269
  • [3] Parameter identifiability in Bayesian inference for building energy models
    Yi, Dong Hyuk
    Kim, Deuk Woo
    Park, Cheol Soo
    [J]. ENERGY AND BUILDINGS, 2019, 198 : 318 - 328
  • [4] Inference-Based Posteriori Parameter Distribution Optimization
    Wang, Xuesong
    Li, Tianyi
    Cheng, Yuhu
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3006 - 3017
  • [5] Global identifiability of nonlinear models of biological systems
    Audoly, S
    Bellu, G
    D'Angiò, L
    Saccomani, MP
    Cobelli, C
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (01) : 55 - 65
  • [6] On linear models and parameter identifiability in experimental biological systems
    Lambertoh, Timothy O.
    Condon, Nicholas D.
    Stow, Jennifer L.
    Hamilton, Nicholas A.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2014, 358 : 102 - 121
  • [7] Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach
    Hines, Keegan E.
    Middendorf, Thomas R.
    Aldrich, Richard W.
    [J]. JOURNAL OF GENERAL PHYSIOLOGY, 2014, 143 (03): : 401 - 416
  • [8] Variational inference-based EM for quantized FIR system parameter identification
    Wang, Xiaoxu
    Li, Chaofeng
    Zhang, Jun
    Zhang, Qianyun
    Hu, Jinwen
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 636 - 640
  • [9] Inference-Based Information Relevance Reasoning Method in Situation Assessment
    Lu, Shan
    Kokar, Mieczyslaw
    [J]. Information (Switzerland), 2024, 15 (10)
  • [10] On Parameter Identifiability in Network-Based Epidemic Models
    István Z. Kiss
    Péter L. Simon
    [J]. Bulletin of Mathematical Biology, 2023, 85