Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach

被引:103
|
作者
Hines, Keegan E.
Middendorf, Thomas R.
Aldrich, Richard W. [1 ]
机构
[1] Univ Texas Austin, Ctr Learning & Memory, Austin, TX 78712 USA
来源
JOURNAL OF GENERAL PHYSIOLOGY | 2014年 / 143卷 / 03期
基金
美国国家卫生研究院;
关键词
AGGREGATED MARKOV-MODELS; BINDING MEASUREMENTS; STRUCTURAL IDENTIFIABILITY; TARGET RECOGNITION; CALCIUM-BINDING; CALMODULIN; IDENTIFICATION; ACTIVATION; HEMOGLOBIN; SIMULATION;
D O I
10.1085/jgp.201311116
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
A major goal of biophysics is to understand the physical mechanisms of biological molecules and systems. Mechanistic models are evaluated based on their ability to explain carefully controlled experiments. By fitting models to data, biophysical parameters that cannot be measured directly can be estimated from experimentation. However, it might be the case that many different combinations of model parameters can explain the observations equally well. In these cases, the model parameters are not identifiable: the experimentation has not provided sufficient constraining power to enable unique estimation of their true values. We demonstrate that this pitfall is present even in simple biophysical models. We investigate the underlying causes of parameter non-identifiability and discuss straightforward methods for determining when parameters of simple models can be inferred accurately. However, for models of even modest complexity, more general tools are required to diagnose parameter non-identifiability. We present a method based in Bayesian inference that can be used to establish the reliability of parameter estimates, as well as yield accurate quantification of parameter confidence.
引用
收藏
页码:401 / 416
页数:16
相关论文
共 50 条
  • [1] On Parameter Identifiability in Non-Linear Biophysical Models
    Hines, Keegan
    Middendorf, Thomas
    Aldrich, Richard
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 405A - 405A
  • [2] Parameter Identifiability for Nonlinear LPV Models
    Srinivasarengan, Krishnan
    Ragot, Jose
    Aubrun, Christophe
    Maquin, Didier
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (02) : 255 - 269
  • [3] Parameter identifiability in Bayesian inference for building energy models
    Yi, Dong Hyuk
    Kim, Deuk Woo
    Park, Cheol Soo
    [J]. ENERGY AND BUILDINGS, 2019, 198 : 318 - 328
  • [4] Bayesian updating and identifiability assessment of nonlinear finite element models
    Ramancha, Mukesh K.
    Astroza, Rodrigo
    Madarshahian, Ramin
    Conte, Joel P.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 167
  • [5] A Bayesian approach to parameter estimation and pooling in nonlinear flood event models
    Campbell, EP
    Fox, DR
    Bates, BC
    [J]. WATER RESOURCES RESEARCH, 1999, 35 (01) : 211 - 220
  • [6] PARAMETER IDENTIFIABILITY IN SPARSE BAYESIAN LEARNING
    Pal, Piya
    Vaidyanathan, P. P.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [7] Identifiability of ordinary or delayed nonlinear models:: a distribution approach
    Denis-Vidal, Lilianne
    Joly-Blanchard, Ghislaine
    Verdiere, Nathalie
    [J]. PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4, 2006, : 1626 - +
  • [8] Identifiability and estimability of Bayesian linear and nonlinear crossed random effects models
    Rohloff, Corissa T.
    Kohli, Nidhi
    Lock, Eric F.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2024, 77 (02): : 375 - 394
  • [9] Inference-based assessment of parameter identifiability in nonlinear biological models
    Daly, Aidan C.
    Gavaghan, David
    Cooper, Jonathan
    Tavener, Simon
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (144)
  • [10] PARAMETER IDENTIFIABILITY OF HYDROLOGICAL MODELS WITH IMPLICIT STRUCTURE - A NUMERICAL APPROACH
    XIA, J
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1989, 34 (01): : 1 - 19