Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach

被引:103
|
作者
Hines, Keegan E.
Middendorf, Thomas R.
Aldrich, Richard W. [1 ]
机构
[1] Univ Texas Austin, Ctr Learning & Memory, Austin, TX 78712 USA
来源
JOURNAL OF GENERAL PHYSIOLOGY | 2014年 / 143卷 / 03期
基金
美国国家卫生研究院;
关键词
AGGREGATED MARKOV-MODELS; BINDING MEASUREMENTS; STRUCTURAL IDENTIFIABILITY; TARGET RECOGNITION; CALCIUM-BINDING; CALMODULIN; IDENTIFICATION; ACTIVATION; HEMOGLOBIN; SIMULATION;
D O I
10.1085/jgp.201311116
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
A major goal of biophysics is to understand the physical mechanisms of biological molecules and systems. Mechanistic models are evaluated based on their ability to explain carefully controlled experiments. By fitting models to data, biophysical parameters that cannot be measured directly can be estimated from experimentation. However, it might be the case that many different combinations of model parameters can explain the observations equally well. In these cases, the model parameters are not identifiable: the experimentation has not provided sufficient constraining power to enable unique estimation of their true values. We demonstrate that this pitfall is present even in simple biophysical models. We investigate the underlying causes of parameter non-identifiability and discuss straightforward methods for determining when parameters of simple models can be inferred accurately. However, for models of even modest complexity, more general tools are required to diagnose parameter non-identifiability. We present a method based in Bayesian inference that can be used to establish the reliability of parameter estimates, as well as yield accurate quantification of parameter confidence.
引用
收藏
页码:401 / 416
页数:16
相关论文
共 50 条
  • [31] A hierarchical Bayesian approach for parameter estimation in HIV models
    Banks, HT
    Grove, S
    Hu, S
    Ma, YY
    [J]. INVERSE PROBLEMS, 2005, 21 (06) : 1803 - 1822
  • [32] IDENTIFIABILITY AND INDISTINGUISHABILITY OF NONLINEAR PHARMACOKINETIC MODELS
    GODFREY, KR
    CHAPMAN, MJ
    VAJDA, S
    [J]. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1994, 22 (03): : 229 - 251
  • [33] THE DETERMINISTIC IDENTIFIABILITY OF NONLINEAR PHARMACOKINETIC MODELS
    GODFREY, KR
    FITCH, WR
    [J]. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1984, 12 (02): : 177 - 191
  • [34] Identifiability of nonlinear logistic test models
    Timo M. Bechger
    Norman D. Verhelst
    Huub H. F. M. Verstralen
    [J]. Psychometrika, 2001, 66 : 357 - 371
  • [35] Parameter redundancy and identifiability in hidden Markov models
    Cole, Diana J.
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 105 - 118
  • [36] Identifiability of nonlinear logistic test models
    Bechger, TM
    Verhelst, ND
    Verstralen, HHFM
    [J]. PSYCHOMETRIKA, 2001, 66 (03) : 357 - 371
  • [37] On the identifiability and distinguishability of nonlinear parametric models
    Walter, E
    Pronzato, L
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (2-3) : 125 - 134
  • [38] Parameter redundancy and identifiability in hidden Markov models
    Diana J. Cole
    [J]. METRON, 2019, 77 : 105 - 118
  • [39] Saddle-Reset for Robust Parameter Estimation and Identifiability Analysis of Nonlinear Mixed Effects Models
    Bjugard Nyberg, Henrik
    Hooker, Andrew C.
    Bauer, Robert J.
    Aoki, Yasunori
    [J]. AAPS JOURNAL, 2020, 22 (04):
  • [40] Saddle-Reset for Robust Parameter Estimation and Identifiability Analysis of Nonlinear Mixed Effects Models
    Henrik Bjugård Nyberg
    Andrew C. Hooker
    Robert J. Bauer
    Yasunori Aoki
    [J]. The AAPS Journal, 22