On linear models and parameter identifiability in experimental biological systems

被引:3
|
作者
Lambertoh, Timothy O. [1 ]
Condon, Nicholas D. [2 ]
Stow, Jennifer L. [2 ]
Hamilton, Nicholas A. [1 ,2 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Div Genom & Computat Biol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Inst Mol Biosci, Mol Cell Biol Div, Brisbane, Qld 4072, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
Modeling; Experimental design; Protein trafficking; Ordinary differential equations; METABOLIC NETWORK MODELS; STRUCTURAL IDENTIFIABILITY; PRACTICAL IDENTIFIABILITY; DYNAMICAL MODELS; QUANTIFICATION; MICROSCOPY; SERIES;
D O I
10.1016/j.jtbi.2014.05.028
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key problem in the biological sciences is to be able to reliably estimate model parameters from experimental data. This is the well-known problem of parameter identifiability. Here, methods are developed for biologists and other modelers to design optimal experiments to ensure parameter identifiability at a structural level. The main results of the paper are to provide a general methodology for extracting parameters of linear models from an experimentally measured scalar function - the transfer function - and a framework for the identifiability analysis of complex model structures using linked models. Linked models are composed by letting the output of one model become the input to another model which is then experimentally measured. The linked model framework is shown to be applicable to designing experiments to identify the measured sub-model and recover the input from the unmeasured sub-model, even in cases that the unmeasured sub-model is not identifiable. Applications for a set of common model features are demonstrated, and the results combined in an example application to a real-world experimental system. These applications emphasize the insight into answering "where to measure" and "which experimental scheme" questions provided by both the parameter extraction methodology and the linked model framework. The aim is to demonstrate the tools' usefulness in guiding experimental design to maximize parameter information obtained, based on the model structure. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 121
页数:20
相关论文
共 50 条
  • [1] Parameter identifiability of nonlinear biological systems
    Saccomani, M
    Audoly, S
    Bellu, G
    D'Angiò, L
    [J]. POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 87 - 93
  • [2] Parameter Identifiability of Quantized Linear Systems
    Shen, Ying
    Zhang, Hui
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 3140 - 3145
  • [3] SENSITIVITY AND PARAMETER IDENTIFIABILITY IN LINEAR-SYSTEMS
    GUARDABASSI, G
    ROMEO, F
    SCATTOLINI, R
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1981, 312 (3-4): : 167 - 177
  • [4] Identifiability and identification of switched linear biological models
    Guo, Ya
    Tan, Jinglu
    [J]. BIOSYSTEMS, 2014, 118 : 31 - 38
  • [5] On Parameter Identifiability in Non-Linear Biophysical Models
    Hines, Keegan
    Middendorf, Thomas
    Aldrich, Richard
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 405A - 405A
  • [6] Identifiability of affine linear parameter-varying models
    Alkhoury, Ziad
    Petreczky, Mihaly
    Mercere, Guillaume
    [J]. AUTOMATICA, 2017, 80 : 62 - 74
  • [7] Comparison of approaches for parameter identifiability analysis of biological systems
    Raue, Andreas
    Karlsson, Johan
    Saccomani, Maria Pia
    Jirstrand, Mats
    Timmer, Jens
    [J]. BIOINFORMATICS, 2014, 30 (10) : 1440 - 1448
  • [8] Global identifiability of nonlinear models of biological systems
    Audoly, S
    Bellu, G
    D'Angiò, L
    Saccomani, MP
    Cobelli, C
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (01) : 55 - 65
  • [9] Analyzing the identifiability of linear dynamic models with parameter space separators
    Avdeenko T.V.
    Kargin S.A.
    [J]. Journal of Applied and Industrial Mathematics, 2008, 2 (04) : 464 - 476
  • [10] On Parameter Identifiability of Linear Multivariable Systems with Communication Access Constraints
    Wang, Lijuan
    Zhang, Hui
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5647 - 5652