ACRIN 6698 trial Quantitative diffusion-weighted MRI to predict pathologic response in neoadjuvant chemotherapy treatment of breast cancer.

被引:1
|
作者
Partridge, Savannah C.
Zhang, Zheng
Newitt, David C.
Gibbs, Jessica E.
Chenevert, Thomas L.
Rosen, Mark Alan
Bolan, Patrick J.
Marques, Helga
Esserman, Laura
Hylton, Nola M.
机构
关键词
D O I
10.1200/JCO.2017.35.15_suppl.11520
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
11520
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Optimal timing for prediction of pathologic complete response to neoadjuvant chemoradiotherapy with diffusion-weighted MRI in patients with esophageal cancer
    Alicia S. Borggreve
    Sophie E. Heethuis
    Mick R. Boekhoff
    Lucas Goense
    Peter S. N. van Rossum
    Lodewijk A. A. Brosens
    Astrid L. H. M. W. van Lier
    Richard van Hillegersberg
    Jan J. W. Lagendijk
    Stella Mook
    Jelle P. Ruurda
    Gert J. Meijer
    European Radiology, 2020, 30 : 1896 - 1907
  • [32] MRI, Clinical Examination, and Mammography for Preoperative Assessment of Residual Disease and Pathologic Complete Response After Neoadjuvant Chemotherapy for Breast Cancer: ACRIN 6657 Trial
    Scheel, John R.
    Kim, Eunhee
    Partridge, Savannah C.
    Lehman, Constance D.
    Rosen, Mark A.
    Bernreuter, Wanda K.
    Pisano, Etta D.
    Marques, Helga S.
    Morris, Elizabeth A.
    Weatherall, Paul T.
    Polin, Sandra M.
    Newstead, Gillian M.
    Esserman, Laura J.
    Schnall, Mitchell D.
    Hylton, Nola M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (06) : 1376 - 1385
  • [33] Factors that predict pathologic complete response in patients receiving neoadjuvant chemotherapy for locally advanced breast cancer.
    Hulikal, Narendra
    Thomas, Joseph
    Fernandes, Donald J.
    Ray, Satadru
    JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (15)
  • [34] Can MRI Predict Pathologic Complete Response After Neoadjuvant Chemotherapy for Locally Advanced Breast Cancer?
    Lee, C.
    Le-Tran, V.
    Olimpiadi, Y.
    Zaremba, N.
    Nelson, M.
    Lang, J. E.
    Sener, S. F.
    ANNALS OF SURGICAL ONCOLOGY, 2018, 25 : S90 - S90
  • [35] Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy
    Atuegwu, Nkiruka C.
    Arlinghaus, Lori R.
    Li, Xia
    BrianWelch, E.
    Chakravarthy, Bapsi A.
    Gore, John C.
    Yankeelov, Thomas E.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (06) : 1689 - 1696
  • [36] Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer
    Sang Hee Park
    Woo Kyung Moon
    Nariya Cho
    Jung Min Chang
    Seock-Ah Im
    In Ae Park
    Keon Wook Kang
    Wonshik Han
    Dong-Young Noh
    European Radiology, 2012, 22 : 18 - 25
  • [37] Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer
    Park, Sang Hee
    Moon, Woo Kyung
    Cho, Nariya
    Chang, Jung Min
    Im, Seock-Ah
    Park, In Ae
    Kang, Keon Wook
    Han, Wonshik
    Noh, Dong-Young
    EUROPEAN RADIOLOGY, 2012, 22 (01) : 18 - 25
  • [38] Diffusion-Weighted MRI for Assessment of Early Cancer Treatment Response
    Galban, Stefanie
    Brisset, Jean-Christophe
    Rehemtulla, Alnawaz
    Chenevert, Thomas L.
    Ross, Brian D.
    Galban, Craig J.
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2010, 11 (06) : 701 - 708
  • [39] Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy
    Sharma, Uma
    Danishad, Karikanni Kalathil A.
    Seenu, Vurthaluru
    Jagannathan, Naranamangalam R.
    NMR IN BIOMEDICINE, 2009, 22 (01) : 104 - 113
  • [40] Predicting and Monitoring Cancer Treatment Response with Diffusion-Weighted MRI
    Thoeny, Harriet C.
    Ross, Brian D.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (01) : 2 - 16