Structure and reaction mechanism of catechol 2,3-dioxygenase (metapyrocatechase)

被引:12
|
作者
Ishida, T [1 ]
Kita, A
Miki, K
Nozaki, M
Horiike, K
机构
[1] Shiga Univ Med Sci, Dept Biochem, Otsu, Shiga 5202192, Japan
[2] Kyoto Univ, Dept Chem, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan
关键词
catechol 2,3-dioxygenase; extradiol dioxygenase; metalloenzyme; non-heme iron; charge-transfer complex;
D O I
10.1016/S0531-5131(02)00149-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Catechol 2,3-dioxygenases catalyzes the extradiol ring-cleavage of catechol derivatives. The enzyme from Pseudomonas putida mt-2 (metapyrocatechase, MPC) is a homotetramer and prefers small monocyclic substrates. We have structurally characterized MPC at a 2.8-Angstrom resolution in the presence of 10% acetone. The subunit comprises the N- and C-terminal domains of a similar structure. The active site is located in a funnel-shaped space of the C-terminal domain. Within this space, an iron atom is directly ligated by three protein residues (His 153, His214, and Glu265), and an acetone molecule binds the Fe atom. The geometry at the Fe site is a distorted tetrahedral. C2/C3-substituted phenols were deprotonated when they bound to holo-MPC. The absorption spectra of the MPC complexes with o-nitrophenol, 2-hydroxybenzaldehyde, and m-nitrophenol showed a new broad absorption around 650 nm. Resonance Raman spectra of the o-nitrophenol-MPC complex excited at 632.8 nm showed the band assigned to the symmetric stretching of the nitro group of o-nitrophenolate. The conserved active-site residues, His199 and Tyr255, may play important roles in the deprotonation of the ligands and the formation of the new absorption band. We propose how the C2/C3-substituted phenolates bind to the Fe(II) center. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:213 / 220
页数:8
相关论文
共 50 条
  • [41] Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway
    Dang, YH
    Dale, WE
    Brown, OR
    FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (04) : 615 - 624
  • [42] The role of serine 167 in human indoleamine 2,3-dioxygenase: A comparison with tryptophan 2,3-dioxygenase
    Chauhan, Nishma
    Basran, Jaswir
    Efimov, Igor
    Svistunenko, Dimitri A.
    Seward, Harriet E.
    Moody, Peter C. E.
    Raven, Emma Lloyd
    BIOCHEMISTRY, 2008, 47 (16) : 4761 - 4769
  • [43] A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process
    Tu, Ningyu
    Zhang, Dongmei
    Niu, Xianchun
    Du, Cheng
    Zhang, Li
    Xie, Wenyu
    Niu, Xiaojun
    Liu, Yang
    Li, Youming
    CHEMOSPHERE, 2020, 246 (246)
  • [44] Structure-function relationship in indoleamine 2,3-dioxygenase
    Wang, YH
    Yeh, SR
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 175A - 175A
  • [45] Indoleamine 2,3-Dioxygenase in Endometriosis
    Yang Hui-Li
    Li Ming-Qing
    生殖与发育医学(英文), 2019, 3 (02) : 110 - 116
  • [46] Indoleamine 2,3-dioxygenase in endometriosis
    Yang, Hui-Li
    Li, Ming-Qing
    REPRODUCTIVE AND DEVELOPMENTAL MEDICINE, 2019, 3 (02) : 110 - 116
  • [47] Indoleamine 2,3-dioxygenase vaccination
    Andersen, Mads Hald
    Svane, Inge Marie
    ONCOIMMUNOLOGY, 2015, 4 (01) : 983770
  • [48] Indoleamine 2,3-dioxygenase in transplantation
    Mulley, William R.
    Nikolic-Paterson, David J.
    NEPHROLOGY, 2008, 13 (03) : 204 - 211
  • [49] NONINVOLVEMENT OF COPPER IN L-TRYPTOPHAN 2,3-DIOXYGENASE REACTION
    ISHIMURA, Y
    HAYAISHI, O
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1973, 248 (24) : 8610 - 8612
  • [50] Indoleamine 2,3-Dioxygenase Does It
    Hoogduijn, Martin J.
    TRANSPLANTATION, 2015, 99 (09) : 1751 - 1752