REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS

被引:4
|
作者
Kaleta, Kamil [1 ]
Olszewski, Mariusz [1 ]
Pietruska-Paluba, Katarzyna [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Subordinate Brownian Motion; Projection; Good Labeling Property; Reflected Process; Nested Fractal; Sierpinski Gasket; Neumann Boundary Conditions; Integrated Density of States; DENSITY-OF-STATES; LIFSCHITZ SINGULARITY; PERIODIC-FUNCTIONS; SIERPINSKI; DIFFUSION; GASKET;
D O I
10.1142/S0218348X19501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of planar simple nested fractals, we prove the existence of the reflected diffusion on a complex of an arbitrary size. Such a process is obtained as a folding projection of the free Brownian motion from the unbounded fractal. We give sharp necessary geometric conditions for the fractal under which this projection can be well defined, and illustrate them by numerous examples. We then construct a proper version of the transition probability densities for the reflected process and we prove that it is a continuous, bounded and symmetric function which satisfies the Chapman-Kolmogorov equations. These provide us with further regularity properties of the reflected process such us Markov, Feller and strong Feller property.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] NMR survey of reflected Brownian motion
    Grebenkov, Denis S.
    [J]. REVIEWS OF MODERN PHYSICS, 2007, 79 (03) : 1077 - 1137
  • [22] Approximations for reflected fractional Brownian motion
    Malsagov, Artagan
    Mandjes, Michel
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)
  • [23] Reflected Brownian motion with drift in a wedge
    Peter Lakner
    Ziran Liu
    Josh Reed
    [J]. Queueing Systems, 2023, 105 : 233 - 270
  • [24] Reflected Brownian motion with drift in a wedge
    Lakner, Peter
    Liu, Ziran
    Reed, Josh
    [J]. QUEUEING SYSTEMS, 2023, 105 (3-4) : 233 - 270
  • [25] The Wiener sausage asymptotics on simple nested fractals
    Pietruska-Paluba, K
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (01) : 111 - 135
  • [26] Large deviations and related LIL's for Brownian motions on nested fractals
    Fukushima, M
    Shima, T
    Takeda, M
    [J]. OSAKA JOURNAL OF MATHEMATICS, 1999, 36 (03) : 497 - 537
  • [27] Arbitrage problems with reflected geometric Brownian motion
    Buckner, Dean
    Dowd, Kevin
    Hulley, Hardy
    [J]. FINANCE AND STOCHASTICS, 2024, 28 (01) : 1 - 26
  • [28] Rates of Convergence to Stationarity for Reflected Brownian Motion
    Blanchet, Jose
    Chen, Xinyun
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (02) : 660 - 681
  • [29] EXACT SIMULATION OF MULTIDIMENSIONAL REFLECTED BROWNIAN MOTION
    Blanchet, Jose
    Murthy, Karthyek
    [J]. JOURNAL OF APPLIED PROBABILITY, 2018, 55 (01) : 137 - 156
  • [30] NONPOLAR POINTS FOR REFLECTED BROWNIAN-MOTION
    BURDZY, K
    MARSHALL, DE
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1993, 29 (02): : 199 - 228