Rates of Convergence to Stationarity for Reflected Brownian Motion

被引:1
|
作者
Blanchet, Jose [1 ]
Chen, Xinyun [2 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Chinese Univ Hong Kong, Shenzhen, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
reflected Brownian motion; rate of convergence; mixing time; STABILITY;
D O I
10.1287/moor.2019.1006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide the first rate of convergence to stationarity analysis for reflected Brownian motion (RBM) as the dimension grows under some uniformity conditions. In particular, if the underlying routing matrix is uniformly contractive, uniform stability of the drift vector holds, and the variances of the underlying Brownian motion (BM) are bounded, then we show that the RBM converges exponentially fast to stationarity with a relaxation time of order O(d(4)(log(d))(3)) as the dimension d -> infinity. Our bound for the relaxation time follows as a corollary of the nonasymptotic bound we obtain for the initial transient effect, which is explicit in terms of the RBM parameters.
引用
收藏
页码:660 / 681
页数:22
相关论文
共 50 条
  • [1] On the rate of convergence to equilibrium for reflected Brownian motion
    Peter W. Glynn
    Rob J. Wang
    [J]. Queueing Systems, 2018, 89 : 165 - 197
  • [2] On the rate of convergence to equilibrium for reflected Brownian motion
    Glynn, Peter W.
    Wang, Rob J.
    [J]. QUEUEING SYSTEMS, 2018, 89 (1-2) : 165 - 197
  • [3] Exponential ergodicity and convergence for generalized reflected Brownian motion
    Tang, Wenpin
    [J]. QUEUEING SYSTEMS, 2019, 92 (1-2) : 83 - 101
  • [4] Exponential ergodicity and convergence for generalized reflected Brownian motion
    Wenpin Tang
    [J]. Queueing Systems, 2019, 92 : 83 - 101
  • [5] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    [J]. Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [6] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [7] PARAMETER AND DIMENSION DEPENDENCE OF CONVERGENCE RATES TO STATIONARITY FOR REFLECTING BROWNIAN MOTIONS
    Banerjee, Sayan
    Budhiraja, Amarjit
    [J]. ANNALS OF APPLIED PROBABILITY, 2020, 30 (05): : 2005 - 2029
  • [8] ON CONVERGENCE TO STATIONARITY OF FRACTIONAL BROWNIAN STORAGE
    Mandjes, Michel
    Norros, Ilkka
    Glynn, Peter
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (04): : 1385 - 1403
  • [9] Traps for reflected Brownian motion
    Krzysztof Burdzy
    Zhen-Qing Chen
    Donald E. Marshall
    [J]. Mathematische Zeitschrift, 2006, 252 : 103 - 132
  • [10] Weak Convergence Theorem of a Nonnegative Random Walk to Sticky Reflected Brownian Motion
    Hirotaka Fushiya
    [J]. Journal of Theoretical Probability, 2010, 23 : 1157 - 1181