3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta

被引:44
|
作者
Sotelo, Julio [1 ,2 ]
Urbina, Jesus [3 ,4 ]
Valverde, Israel [5 ,6 ]
Tejos, Cristian [7 ,8 ,9 ,10 ]
Irarrazaval, Pablo [7 ,8 ,9 ,10 ]
Andia, Marcelo E. [11 ,12 ,13 ,14 ]
Uribe, Sergio [11 ,12 ,13 ,14 ]
Hurtado, Daniel E. [8 ,9 ,10 ,15 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Elect Engn, Biomed Imaging Ctr, Santiago 7820436, Chile
[2] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago 7820436, Chile
[3] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Santiago 8331150, Chile
[4] Pontificia Univ Catolica Chile, Sch Med, Santiago 8331150, Chile
[5] Hosp Virgen del Rocio, Pediat Cardiol Unit, Seville Biomed Inst, Seville 41013, Spain
[6] Hosp Virgen del Rocio, Lab Cardiovasc Pathophysiol, Seville Biomed Inst, Seville 41013, Spain
[7] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Dept Elect Engn, Sch Engn, Santiago 7820436, Chile
[8] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago 7820436, Chile
[9] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago 7820436, Chile
[10] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago 7820436, Chile
[11] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Dept Radiol, Sch Med, Santiago 8331150, Chile
[12] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago 8331150, Chile
[13] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago 8331150, Chile
[14] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago 8331150, Chile
[15] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Sch Engn, Santiago 7820436, Chile
关键词
3D CINE PC-MRI; finite elements; flow quantification; oscillatory shear index; wall shear stress; PHASE-CONTRAST MRI; 4D FLOW; BLOOD-FLOW; VALVE; GRADIENT;
D O I
10.1109/TMI.2016.2517406
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.
引用
收藏
页码:1475 / 1487
页数:13
相关论文
共 50 条
  • [31] Error analysis of 3D shearography using finite-element modelling
    Goto, D. T.
    Groves, R. M.
    OPTICAL MICRO- AND NANOMETROLOGY III, 2010, 7718
  • [32] Reproducibility and inter-observer variability of velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta
    Pim van Ooij
    Alexander L Powell
    Wouter V Potters
    Alex J Barker
    Michael Markl
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)
  • [33] Finite-element 3D modeling of stress patterns around a dipping fault
    RMLobatskaya
    IPStrelchenko
    ESDolgikh
    Geoscience Frontiers, 2018, 9 (05) : 1555 - 1563
  • [34] Finite-element 3D modeling of stress patterns around a dipping fault
    Lobatskaya, R. M.
    Strelchenko, I. P.
    Dolgikh, E. S.
    GEOSCIENCE FRONTIERS, 2018, 9 (05) : 1555 - 1563
  • [35] Finite-element 3D modeling of stress patterns around a dipping fault
    R.M.Lobatskaya
    I.P.Strelchenko
    E.S.Dolgikh
    Geoscience Frontiers, 2018, (05) : 1555 - 1563
  • [36] On the 2D and 3D finite element simulation in orthopaedy using MRI
    Bartos, M
    Kestranek, Z
    Kestránek, Z
    Nedoma, J
    Stehlík, J
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 50 (1-4) : 115 - 121
  • [37] Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries
    Cibis, Merih
    Potters, Wouter V.
    Gijsen, Frank J. H.
    Marquering, Henk
    VanBavel, Ed
    van der Steen, Antonius F. W.
    Nederveen, Aart J.
    Wentzel, Jolanda J.
    NMR IN BIOMEDICINE, 2014, 27 (07) : 826 - 834
  • [38] Finite element modelling of complex 3D image data with quantification and analysis
    Chakkour, Tarik
    OXFORD OPEN MATERIALS SCIENCE, 2024, 4 (01):
  • [39] MODELING 3D GROUNDWATER-FLOW BY MODIFIED FINITE-ELEMENT METHOD
    YU, FX
    SINGH, VP
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 1994, 120 (05) : 892 - 909
  • [40] 3D MT Anisotropic Inversion Based on Unstructured Finite-element Method
    Cao, Xiaoyue
    Huang, Xin
    Yin, Changchun
    Yan, Liangiun
    Zhang, Bo
    JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, 2021, 26 (01) : 49 - 60