3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta

被引:44
|
作者
Sotelo, Julio [1 ,2 ]
Urbina, Jesus [3 ,4 ]
Valverde, Israel [5 ,6 ]
Tejos, Cristian [7 ,8 ,9 ,10 ]
Irarrazaval, Pablo [7 ,8 ,9 ,10 ]
Andia, Marcelo E. [11 ,12 ,13 ,14 ]
Uribe, Sergio [11 ,12 ,13 ,14 ]
Hurtado, Daniel E. [8 ,9 ,10 ,15 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Elect Engn, Biomed Imaging Ctr, Santiago 7820436, Chile
[2] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago 7820436, Chile
[3] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Santiago 8331150, Chile
[4] Pontificia Univ Catolica Chile, Sch Med, Santiago 8331150, Chile
[5] Hosp Virgen del Rocio, Pediat Cardiol Unit, Seville Biomed Inst, Seville 41013, Spain
[6] Hosp Virgen del Rocio, Lab Cardiovasc Pathophysiol, Seville Biomed Inst, Seville 41013, Spain
[7] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Dept Elect Engn, Sch Engn, Santiago 7820436, Chile
[8] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago 7820436, Chile
[9] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago 7820436, Chile
[10] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago 7820436, Chile
[11] Pontificia Univ Catolica Chile, Biomed Imaging Ctr, Dept Radiol, Sch Med, Santiago 8331150, Chile
[12] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago 8331150, Chile
[13] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago 8331150, Chile
[14] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago 8331150, Chile
[15] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Sch Engn, Santiago 7820436, Chile
关键词
3D CINE PC-MRI; finite elements; flow quantification; oscillatory shear index; wall shear stress; PHASE-CONTRAST MRI; 4D FLOW; BLOOD-FLOW; VALVE; GRADIENT;
D O I
10.1109/TMI.2016.2517406
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.
引用
收藏
页码:1475 / 1487
页数:13
相关论文
共 50 条
  • [21] Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR
    Jonas Bürk
    Philipp Blanke
    Zoran Stankovic
    Alex Barker
    Maximilian Russe
    Julia Geiger
    Alex Frydrychowicz
    Mathias Langer
    Michael Markl
    Journal of Cardiovascular Magnetic Resonance, 14
  • [22] 3D finite-element analysis of innovative coconut palm stem shaped headed shear connectors
    Pardeshi, Rahul Tarachand
    Patil, Yogesh Deoram
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2023, 177 (07) : 606 - 617
  • [23] 3D FINITE-ELEMENT STRESS-ANALYSIS OF PARTIAL DENTURE
    FUKASE, Y
    OHYAMA, T
    SATOH, Y
    OHKI, K
    NISHIYAMA, M
    JOURNAL OF DENTAL RESEARCH, 1995, 74 : 558 - 558
  • [24] Smoothing finite-element method for the reconstruction of surface from 3D scattered data
    Cai, Zhong-Yi
    Li, Ming-Zhe
    International E-Conference on Computer Science 2005, 2005, 2 : 16 - 19
  • [25] VISUALIZATION OF 3D SOLID FINITE-ELEMENT MESH BY THE METHOD OF SECTIONING
    LO, SH
    COMPUTERS & STRUCTURES, 1990, 35 (01) : 63 - 68
  • [26] A flow simulation for the epoxy casting process using a 3D finite-element method
    Mitani, T
    Hamada, H
    POLYMER ENGINEERING AND SCIENCE, 2005, 45 (03): : 364 - 374
  • [27] THERMOMECHANICAL SIMULATION OF SEAMLESS TUBE ROLLING USING A 3D FINITE-ELEMENT METHOD
    SOLA, G
    VACANCE, M
    MASSONI, E
    CHENOT, JL
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1994, 45 (1-4) : 187 - 192
  • [28] A Geometric Multigrid Method for 3D Magnetotelluric Forward Modeling Using Finite-Element Method
    Huang, Xianyang
    Yin, Changchun
    Wang, Luyuan
    Liu, Yunhe
    Zhang, Bo
    Ren, Xiuyan
    Su, Yang
    Li, Jun
    Chen, Hui
    REMOTE SENSING, 2023, 15 (02)
  • [29] Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images
    Augst, AD
    Barratt, DC
    Hughes, AD
    Glor, FP
    Thom, SAM
    Xu, XY
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (02): : 218 - 222
  • [30] 3D Visualization of Structures Using Finite-Element Analysis in Teaching
    Young, Ben
    Ellobody, Ehab
    Hu, Thomas W. C.
    JOURNAL OF PROFESSIONAL ISSUES IN ENGINEERING EDUCATION AND PRACTICE, 2012, 138 (02) : 131 - 138