Model-based clustering of longitudinal data

被引:1
|
作者
McNicholas, Paul D. [1 ]
Murphy, T. Brendan [2 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
基金
加拿大自然科学与工程研究理事会; 爱尔兰科学基金会;
关键词
Cholesky decomposition; longitudinal data; mixture models; model-based clustering; time course data; yeast sporulation; HIGH-DIMENSIONAL DATA; DISCRIMINANT-ANALYSIS; MAXIMUM-LIKELIHOOD; MIXTURES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new family of mixture models for the model-based clustering of longitudinal data is introduced. The covariance structures of eight members of this new family of models are given and the associated maximum likelihood estimates for the parameters are derived via expectation-maximization (EM) algorithms. The Bayesian information criterion is used for model selection and a convergence criterion based on the Aitken acceleration is used to determine the convergence of these EM algorithms. This new family of models is applied to yeast sporulation time course data, where the models give good clustering performance. Further constraints are then imposed on the decomposition to allow a deeper investigation of the correlation structure of the yeast data. These constraints greatly extend this new family of models, with the addition of many parsimonious models. The Canadian Journal of Statistics 38: 153-168; 2010 (c) 2010 Statistical Society of Canada
引用
收藏
页码:153 / 168
页数:16
相关论文
共 50 条
  • [1] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [2] Bayesian model-based clustering for longitudinal ordinal data
    Roy Costilla
    Ivy Liu
    Richard Arnold
    Daniel Fernández
    Computational Statistics, 2019, 34 : 1015 - 1038
  • [3] Bayesian model-based clustering for longitudinal ordinal data
    Costilla, Roy
    Liu, Ivy
    Arnold, Richard
    Fernandez, Daniel
    COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1015 - 1038
  • [4] Model-based clustering of high-dimensional longitudinal data via regularization
    Yang, Luoying
    Wu, Tong Tong
    BIOMETRICS, 2023, 79 (02) : 761 - 774
  • [5] Model-based clustering for noisy longitudinal circular data, with application to animal movement
    Ranalli, M.
    Maruotti, A.
    ENVIRONMETRICS, 2020, 31 (02)
  • [6] Boosting for model-based data clustering
    Saffari, Amir
    Bischof, Horst
    PATTERN RECOGNITION, 2008, 5096 : 51 - 60
  • [7] Model-Based Clustering of Temporal Data
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 9 - 16
  • [8] MODEL-BASED LONGITUDINAL CLUSTERING WITH VARYING CLUSTER ASSIGNMENTS
    Sewell, Daniel K.
    Chen, Yuguo
    Bernhard, William
    Sulkin, Tracy
    STATISTICA SINICA, 2016, 26 (01) : 205 - 233
  • [9] Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers
    Maruotti, Antonello
    Punzo, Antonio
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 475 - 496
  • [10] Model-based clustering with missing not at random data
    Sportisse, Aude
    Marbac, Matthieu
    Laporte, Fabien
    Celeux, Gilles
    Boyer, Claire
    Josse, Julie
    Biernacki, Christophe
    STATISTICS AND COMPUTING, 2024, 34 (04)