Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers

被引:26
|
作者
Maruotti, Antonello [1 ,2 ]
Punzo, Antonio [3 ]
机构
[1] LUMSA, Dipartimento Sci Econ Polit & Lingue, Rome, Italy
[2] Univ Southampton, Ctr Innovat & Leadership Hlth Sci, Southampton, Hants, England
[3] Univ Catania, Dipartimento Econ & Impresa, Catania, Italy
关键词
Hidden Markov models; Robust regression; Multivariate contaminated Gaussian distribution; ECM algorithm; HIDDEN MARKOV-MODELS; MAXIMUM-LIKELIHOOD-ESTIMATION; LINEAR MIXED MODELS; FINITE MIXTURES; IDENTIFIABILITY; MAXIMIZATION; REGRESSION; HETEROGENEITY; ALGORITHM; DIMENSION;
D O I
10.1016/j.csda.2016.05.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A class of multivariate linear models under the longitudinal setting, in which unobserved heterogeneity may evolve over time, is introduced. A latent structure is considered to model heterogeneity, having a discrete support and following a first-order Markov chain. Heavy-tailed multivariate distributions are introduced to deal with outliers. Maximum likelihood estimation is performed to estimate parameters by using expectation-maximization and expectation-conditional-maximization algorithms. Notes on model identifiability and robustness are provided, along with all computational details needed to implement the proposal. Three applications on artificial and real data are illustrated. These focus on the potential effects of outliers on clustering and their identification. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 496
页数:22
相关论文
共 50 条
  • [1] Time-varying clustering of multivariate longitudinal observations
    Maruotti, Antonello
    Vichi, Maurizio
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (02) : 430 - 443
  • [2] A FRAMEWORK FOR ANALYSING LONGITUDINAL DATA INVOLVING TIME-VARYING COVARIATES
    Drikvandi, Reza
    Verbeke, Geert
    Molenberghs, Geert
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 1618 - 1641
  • [3] Multivariate functional data modeling with time-varying clustering
    Philip A. White
    Alan E. Gelfand
    [J]. TEST, 2021, 30 : 586 - 602
  • [4] Multivariate functional data modeling with time-varying clustering
    White, Philip A.
    Gelfand, Alan E.
    [J]. TEST, 2021, 30 (03) : 586 - 602
  • [5] Model-based clustering of longitudinal data
    McNicholas, Paul D.
    Murphy, T. Brendan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (01): : 153 - 168
  • [6] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [7] Model-based clustering for multivariate functional data
    Jacques, Julien
    Preda, Cristian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 92 - 106
  • [8] MODEL-BASED LONGITUDINAL CLUSTERING WITH VARYING CLUSTER ASSIGNMENTS
    Sewell, Daniel K.
    Chen, Yuguo
    Bernhard, William
    Sulkin, Tracy
    [J]. STATISTICA SINICA, 2016, 26 (01) : 205 - 233
  • [9] Multiscale Adaptive Marginal Analysis of Longitudinal Neuroimaging Data with Time-Varying Covariates
    Skup, Martha
    Zhu, Hongtu
    Zhang, Heping
    [J]. BIOMETRICS, 2012, 68 (04) : 1083 - 1092
  • [10] AN ANALYSIS FOR MENSTRUAL DATA WITH TIME-VARYING COVARIATES
    MURPHY, SA
    BENTLEY, GR
    OHANESIAN, MA
    [J]. STATISTICS IN MEDICINE, 1995, 14 (17) : 1843 - 1857