Model-based clustering for noisy longitudinal circular data, with application to animal movement

被引:4
|
作者
Ranalli, M. [1 ]
Maruotti, A. [2 ,3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Econ & Finanza, Via Columbia 2, I-00133 Rome, Italy
[2] Libera Univ Maria SS Assunta, Dipartimento Giurisprudenza Econ Polit & Lingue M, Rome, Italy
[3] Univ Bergen, Dept Math, Bergen, Norway
关键词
animal movement; hidden Markov models; projected normal distribution; robust clustering; HIDDEN MARKOV-MODELS; ROBUST ESTIMATION; DIRECTIONAL-DATA; LIKELIHOOD; IDENTIFIABILITY; SEGMENTATION; MAXIMIZATION;
D O I
10.1002/env.2572
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we introduce a model for circular data analysis to robustly estimate parameters, under a longitudinal clustering setting. A hidden Markov model for longitudinal circular data combined with a uniform conditional density on the circle to capture noise observations is proposed. A set of exogenous covariates is available; they are assumed to affect the evolution of clustering over time. Parameter estimation is carried out through a hybrid expectation-maximization algorithm, using recursions widely adopted in the hidden Markov model literature. Examples of application of the proposal on real and simulated data are performed to show the effectiveness of the proposal.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Model-based clustering of longitudinal data
    McNicholas, Paul D.
    Murphy, T. Brendan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (01): : 153 - 168
  • [2] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [3] Bayesian model-based clustering for longitudinal ordinal data
    Roy Costilla
    Ivy Liu
    Richard Arnold
    Daniel Fernández
    [J]. Computational Statistics, 2019, 34 : 1015 - 1038
  • [4] Bayesian model-based clustering for longitudinal ordinal data
    Costilla, Roy
    Liu, Ivy
    Arnold, Richard
    Fernandez, Daniel
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (03) : 1015 - 1038
  • [5] Model-Based Clustering of Longitudinal Data: Application to Modeling Disease Course and Gene Expression Trajectories
    Ciampi, A.
    Campbell, H.
    Dyachenko, A.
    Rich, B.
    McCusker, J.
    Cole, M. G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (07) : 992 - 1005
  • [6] Model-based clustering of multivariate skew data with circular components and missing values
    Lagona, Francesco
    Picone, Marco
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (05) : 927 - 945
  • [7] Model-based clustering of high-dimensional longitudinal data via regularization
    Yang, Luoying
    Wu, Tong Tong
    [J]. BIOMETRICS, 2023, 79 (02) : 761 - 774
  • [8] Boosting for model-based data clustering
    Saffari, Amir
    Bischof, Horst
    [J]. PATTERN RECOGNITION, 2008, 5096 : 51 - 60
  • [9] Model-Based Clustering of Temporal Data
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2013, 2013, 8131 : 9 - 16
  • [10] MODEL-BASED LONGITUDINAL CLUSTERING WITH VARYING CLUSTER ASSIGNMENTS
    Sewell, Daniel K.
    Chen, Yuguo
    Bernhard, William
    Sulkin, Tracy
    [J]. STATISTICA SINICA, 2016, 26 (01) : 205 - 233