Estimation and testing for the integer-valued threshold autoregressive models based on negative binomial thinning

被引:11
|
作者
Wang, Xiaohong [1 ,2 ]
Wang, Dehui [1 ]
Yang, Kai [3 ]
Xu, Da [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun, Jilin, Peoples R China
[2] Jilin Normal Univ, Coll Math, Siping, Jilin, Peoples R China
[3] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Threshold autoregressive processes; Change point autoregressive processes; Negative binomial thinning; Empirical likelihood; Nonlinearity test; EMPIRICAL LIKELIHOOD; TIME-SERIES; COUNTS;
D O I
10.1080/03610918.2019.1586929
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To better describe the characteristics of time series of counts such as overdispersion or structural change, in this paper, we redefines the integer-valued threshold autoregressive models based on negative binomial thinning (NBTINAR(1)) under a weaker condition that the expectation of the innovations is finite. Parameters' point estimation and interval estimation problems are considered. A method to test the nonlinearity of the data is provided. As an illustration, we conduct a simulation study and empirical analysis of Pittsburgh crime data sets.
引用
下载
收藏
页码:1622 / 1644
页数:23
相关论文
共 50 条