Extension problems and non-Abelian duality for C*-algebras

被引:0
|
作者
Huef, Astrid An [1 ]
Kaliszewski, S.
Raeburn, Iain
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[3] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW 2308, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that H is a closed subgroup of a locally compact group G. We show that a unitary representation U of H is the restriction of a unitary representation of G if and only if a dual representation (U) over cap of a crossed product C*(G) x (G/H) is regular in an appropriate sense. We then discuss the problem of deciding whether a given representation is regular; we believe that this problem will prove to be an interesting test question in non-Abelian duality for crossed products of C*-algebras.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [31] Non-Abelian duality in the string effective action
    Bossard, A
    Mohammedi, N
    NUCLEAR PHYSICS B, 2001, 595 (1-2) : 93 - 118
  • [32] Decomposition of variables and duality in non-Abelian models
    A. P. Protogenov
    V. A. Verbus
    Theoretical and Mathematical Physics, 2007, 151 : 863 - 868
  • [33] A non-abelian duality for (higher) gauge theories
    Pulmann, Jan
    Severa, Pavol
    Valach, Fridrich
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 25 (01) : 241 - 274
  • [34] On a duality for codes over non-abelian groups
    Heiko Dietrich
    Jeroen Schillewaert
    Designs, Codes and Cryptography, 2020, 88 : 789 - 805
  • [35] Non-Abelian U-duality for membranes
    Sakatani, Yuho
    Uehara, Shozo
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (07):
  • [37] Non-abelian cohomology and extensions of lie algebras
    Inassaridze, N.
    Khmaladze, E.
    Ladra, M.
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 413 - 432
  • [38] COMMUTATORS OF HAMILTONIAN OPERATORS AND NON-ABELIAN ALGEBRAS
    JORGENSEN, PET
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (01) : 115 - 133
  • [39] On the non-abelian tensor product of Lie algebras
    Salemkar, Ali Reza
    Tavallaee, Hamid
    Mohammadzadeh, Hamid
    Edalatzadeh, Behrouz
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 333 - 341
  • [40] A non-abelian tensor product of Leibniz algebras
    Gnedbaye, AV
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1149 - +