Extension problems and non-Abelian duality for C*-algebras

被引:0
|
作者
Huef, Astrid An [1 ]
Kaliszewski, S.
Raeburn, Iain
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[3] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW 2308, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that H is a closed subgroup of a locally compact group G. We show that a unitary representation U of H is the restriction of a unitary representation of G if and only if a dual representation (U) over cap of a crossed product C*(G) x (G/H) is regular in an appropriate sense. We then discuss the problem of deciding whether a given representation is regular; we believe that this problem will prove to be an interesting test question in non-Abelian duality for crossed products of C*-algebras.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [21] Bosonization, duality, and the C-theorem in the non-abelian Thirring model
    Rodrigo Corso B. Santos
    Carlos A. Hernaski
    Pedro R. S. Gomes
    Journal of High Energy Physics, 2023
  • [22] Bosonization, duality, and the C-theorem in the non-abelian Thirring model
    Santos, Rodrigo Corso B.
    Hernaski, Carlos A.
    Gomes, Pedro R. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (07)
  • [23] On a duality for codes over non-abelian groups
    Dietrich, Heiko
    Schillewaert, Jeroen
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 789 - 805
  • [24] GAUGED WZW MODELS AND NON-ABELIAN DUALITY
    SFETSOS, K
    PHYSICAL REVIEW D, 1994, 50 (04): : 2784 - 2798
  • [25] Exact non-abelian target space duality
    Hewson, S
    Perry, M
    PHYSICS LETTERS B, 1997, 391 (3-4) : 316 - 323
  • [26] Super non-Abelian T-duality
    Bielli, Daniele
    Penati, Silvia
    Sorokin, Dmitri
    Wolf, Martin
    NUCLEAR PHYSICS B, 2022, 983
  • [27] Decomposition of variables and duality in non-Abelian models
    Protogenov, A. P.
    Verbus, V. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (03) : 863 - 868
  • [28] A non-abelian duality for (higher) gauge theories
    Pulmann, Jan
    Severa, Pavol
    Valach, Fridrich
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 25 (01) : 241 - 274
  • [29] On a duality for codes over non-abelian groups
    Heiko Dietrich
    Jeroen Schillewaert
    Designs, Codes and Cryptography, 2020, 88 : 789 - 805
  • [30] Non-Abelian U-duality for membranes
    Sakatani, Yuho
    Uehara, Shozo
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (07):