Finite Volume approximation of a two-phase two fluxes degenerate Cahn-Hilliard model

被引:2
|
作者
Cances, Clement [1 ]
Nabet, Flore [2 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Inria,Lab Paul Painleve, F-59000 Lille, France
[2] Ecole Polytech, CNRS, IP Paris, CMAP, F-91128 Palaiseau, France
关键词
two-phase flow; degenerate Cahn– Hilliard system; finite volumes; convergence; GRADIENT FLOWS; EQUATIONS; DISCRETIZATION; CONVERGENCE; COMPACTNESS; SCHEMES;
D O I
10.1051/m2an/2021002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a time implicit Finite Volume scheme for degenerate Cahn-Hilliard model proposed in [W. E and P. Palffy-Muhoray, Phys. Rev. E 55 (1997) R3844-R3846] and studied mathematically by the authors in [C. Cances, D. Matthes and F. Nabet, Arch. Ration. Mech. Anal. 233 (2019) 837-866]. The scheme is shown to preserve the key properties of the continuous model, namely mass conservation, positivity of the concentrations, the decay of the energy and the control of the entropy dissipation rate. This allows to establish the existence of a solution to the nonlinear algebraic system corresponding to the scheme. Further, we show thanks to compactness arguments that the approximate solution converges towards a weak solution of the continuous problems as the discretization parameters tend to 0. Numerical results illustrate the behavior of the numerical model.
引用
收藏
页码:969 / 1003
页数:35
相关论文
共 50 条
  • [21] A divergence-free HDG scheme for the Cahn-Hilliard phase-field model for two-phase incompressible flow
    Fu, Guosheng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [22] ERROR ESTIMATES FOR A FULLY DISCRETIZED SCHEME TO A CAHN-HILLIARD PHASE-FIELD MODEL FOR TWO-PHASE INCOMPRESSIBLE FLOWS
    Cai, Yongyong
    Shen, Jie
    MATHEMATICS OF COMPUTATION, 2018, 87 (313) : 2057 - 2090
  • [23] ON THE VISCOUS CAHN-HILLIARD SYSTEM WITH TWO MOBILITIES
    Cherfils, Laurence
    Miranville, Alain
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (12): : 3606 - 3621
  • [24] On fully practical finite element approximations of degenerate Cahn-Hilliard systems
    Barrett, JW
    Blowey, JF
    Garcke, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 713 - 748
  • [25] CONTROL VOLUME APPROXIMATION OF DEGENERATE TWO-PHASE POROUS FLOWS
    Murphy, Thomas J.
    Walkington, Noel J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 527 - 546
  • [26] Analysis of multilevel finite volume approximation of 2D convective Cahn-Hilliard equation
    Appadu, A. R.
    Djoko, J. K.
    Gidey, H. H.
    Lubuma, J. M. S.
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (01) : 253 - 304
  • [27] Numerical simulation of gas-liquid two-phase flow with phase change using Cahn-Hilliard equation
    Tsujimoto, K.
    Kambayashi, Y.
    Shakouchi, T.
    Ando, T.
    TURBULENCE, HEAT AND MASS TRANSFER 6, 2009, : 827 - 830
  • [28] Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows
    Cai, Yongyong
    Choi, Heejun
    Shen, Jie
    NUMERISCHE MATHEMATIK, 2017, 137 (02) : 417 - 449
  • [29] A least squares based finite volume method for the Cahn-Hilliard and Cahn-Hilliard-reaction equations
    Dargaville, S.
    Farrell, T. W.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 225 - 244
  • [30] Second order approximation for a quasi-incompressible Navier-Stokes Cahn-Hilliard system of two-phase flows with variable density
    Guo, Zhenlin
    Cheng, Qing
    Lin, Ping
    Liu, Chun
    Lowengrub, John
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 448