CONTROL VOLUME APPROXIMATION OF DEGENERATE TWO-PHASE POROUS FLOWS

被引:3
|
作者
Murphy, Thomas J. [1 ]
Walkington, Noel J. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
degenerate; two-phase flow; convexity; EQUATIONS; DISCRETIZATIONS; EXISTENCE; MEDIA;
D O I
10.1137/17M1160744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit Euler approximations of the equations governing the porous flow of two immiscible incompressible fluids are shown to be the Euler-Lagrange equations of a convex function. Tools from convex analysis are then used to develop robust fully discrete algorithms for their numerical approximation. Existence and uniqueness of solutions to control volume approximations are established.
引用
收藏
页码:527 / 546
页数:20
相关论文
共 50 条
  • [1] ON A DEGENERATE PARABOLIC SYSTEM FOR COMPRESSIBLE, IMMISCIBLE, TWO-PHASE FLOWS IN POROUS MEDIA
    Galusinski, Cedric
    Saad, Mazen
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2004, 9 (11-12) : 1235 - 1278
  • [2] Finite Volume approximation of a two-phase two fluxes degenerate Cahn-Hilliard model
    Cances, Clement
    Nabet, Flore
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 969 - 1003
  • [3] Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media
    G. M. Coclite
    S. Mishra
    N. H. Risebro
    F. Weber
    Computational Geosciences, 2014, 18 : 637 - 659
  • [4] Analysis and numerical approximation of Brinkman regularization of two-phase flows in porous media
    Coclite, G. M.
    Mishra, S.
    Risebro, N. H.
    Weber, F.
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 637 - 659
  • [5] Finite volume approximation of degenerate two-phase flow model with unlimited air mobility
    Andreianov, Boris
    Eymard, Robert
    Ghilani, Mustapha
    Marhraoui, Nouzha
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 441 - 474
  • [6] Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media
    Mustapha Ghilani
    EL Houssaine Quenjel
    Mazen Saad
    Computational Geosciences, 2019, 23 : 55 - 79
  • [7] Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media
    Ghilani, Mustapha
    Quenjel, E. L. Houssaine
    Saad, Mazen
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (01) : 55 - 79
  • [8] Two-phase jet flows in porous media
    Baryshnikov, N. A.
    Belyakov, G. V.
    Turuntaev, S. B.
    FLUID DYNAMICS, 2017, 52 (01) : 128 - 137
  • [9] Two-phase jet flows in porous media
    N. A. Baryshnikov
    G. V. Belyakov
    S. B. Turuntaev
    Fluid Dynamics, 2017, 52 : 128 - 137
  • [10] Two-phase Flows Simulation in Closed Volume
    Fedorov, A. V.
    Lavruk, S. A.
    INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2016), 2016, 1770