CONTROL VOLUME APPROXIMATION OF DEGENERATE TWO-PHASE POROUS FLOWS

被引:3
|
作者
Murphy, Thomas J. [1 ]
Walkington, Noel J. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
degenerate; two-phase flow; convexity; EQUATIONS; DISCRETIZATIONS; EXISTENCE; MEDIA;
D O I
10.1137/17M1160744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit Euler approximations of the equations governing the porous flow of two immiscible incompressible fluids are shown to be the Euler-Lagrange equations of a convex function. Tools from convex analysis are then used to develop robust fully discrete algorithms for their numerical approximation. Existence and uniqueness of solutions to control volume approximations are established.
引用
收藏
页码:527 / 546
页数:20
相关论文
共 50 条
  • [21] Energy Stable Discretization for Two-Phase Porous Media Flows
    Cances, Clement
    Nabet, Flore
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 213 - 221
  • [22] Anisotropy effects in two-phase flows through porous media
    Dmitriev, M. N.
    Dmitriev, N. M.
    Maksimov, V. M.
    Semiglasov, D. Yu.
    FLUID DYNAMICS, 2010, 45 (03) : 468 - 473
  • [23] Immiscible two-phase fluid flows in deformable porous media
    Lo, WC
    Sposito, G
    Majer, E
    ADVANCES IN WATER RESOURCES, 2002, 25 (8-12) : 1105 - 1117
  • [24] Anisotropy effects in two-phase flows through porous media
    M. N. Dmitriev
    N. M. Dmitriev
    V. M. Maksimov
    D. Yu. Semiglasov
    Fluid Dynamics, 2010, 45 : 468 - 473
  • [25] Phenomenological meniscus model for two-phase flows in porous media
    Panfilov, M
    Panfilova, I
    TRANSPORT IN POROUS MEDIA, 2005, 58 (1-2) : 87 - 119
  • [26] FINITE VOLUME SCHEME FOR TWO-PHASE FLOWS IN HETEROGENEOUS POROUS MEDIA INVOLVING CAPILLARY PRESSURE DISCONTINUITIES
    Cances, Clement
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05): : 973 - 1001
  • [27] A Convergent Finite Volume Scheme for Two-Phase Flows in Porous Media with Discontinuous Capillary Pressure Field
    Brenner, K.
    Cances, C.
    Hilhorst, D.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 185 - +
  • [28] Corrections of gradiomanometer data for volume fractions in two-phase flows
    Fordham, EJ
    Lenn, CP
    Holmes, A
    Simonian, S
    Ramos, RT
    MEASUREMENT SCIENCE AND TECHNOLOGY, 1999, 10 (12) : N131 - N135
  • [29] Perturbation finite volume method and application in two-phase flows
    Dong, Hefei
    Zhang, Deliang
    Yang, Guowei
    Jisuan Wuli/Chinese Journal of Computational Physics, 2009, 26 (06): : 857 - 864
  • [30] Numerical approximation for a Baer-Nunziato model of two-phase flows
    Mai Duc Thanh
    Kroener, Dietmar
    Nguyen Thanh Nam
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (05) : 702 - 721