Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death

被引:28
|
作者
Shardell, Michelle [1 ]
Hicks, Gregory E. [2 ]
Ferrucci, Luigi [3 ]
机构
[1] Univ Maryland, Dept Epidemiol & Publ Hlth, Baltimore, MD 21201 USA
[2] Univ Delaware, Dept Phys Therapy, Newark, DE 19716 USA
[3] NIA, Baltimore, MD 21225 USA
基金
美国国家卫生研究院;
关键词
Causal inference; Longitudinal data analysis; Missing data; Observational studies; VITAMIN-D DEFICIENCY; PRINCIPAL STRATIFICATION; MISSING DATA; HYPOTHETICAL INTERVENTIONS; POST-RANDOMIZATION; OUTCOMES; MORTALITY; RESPOND; MODELS;
D O I
10.1093/biostatistics/kxu032
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by aging research, we propose an estimator of the effect of a time-varying exposure on an outcome in longitudinal studies with dropout and truncation by death. We use an inverse-probability weighted (IPW) estimator to derive a doubly robust augmented inverse-probability weighted (AIPW) estimator. IPW estimation involves weights for the exposure mechanism, dropout, and mortality; AIPW estimation additionally involves estimating data-generating models via regression. We demonstrate that the estimators identify a causal contrast that is a function of principal strata effects under a set of assumptions. Simulations show that AIPW estimation is unbiased when weights or outcome regressions are correct, and that AIPW estimation is more efficient than IPW estimation when all models are correct. We apply the method to a study of vitamin D and gait speed among older adults.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 50 条
  • [41] Causal inference for observational longitudinal studies using deep survival models
    Zhu, Jie
    Gallego, Blanca
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 131
  • [42] AN EFFICIENT DOUBLY-ROBUST IMPUTATION FRAMEWORK FOR LONGITUDINAL DROPOUT, WITH AN APPLICATION TO AN ALZHEIMER'S CLINICAL TRIAL
    Qiu, Yuqi
    Messer, Karen
    [J]. ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 2473 - 2493
  • [43] Robust and efficient estimation for the treatment effect in causal inference and missing data problems
    Lin, Huazhen
    Zhou, Fanyin
    Wang, Qiuxia
    Zhou, Ling
    Qin, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 363 - 380
  • [44] Improved double-robust estimation in missing data and causal inference models
    Rotnitzky, Andrea
    Lei, Quanhong
    Sued, Mariela
    Robins, James M.
    [J]. BIOMETRIKA, 2012, 99 (02) : 439 - 456
  • [45] Machine learning outcome regression improves doubly robust estimation of average causal effects
    Choi, Byeong Yeob
    Wang, Chen-Pin
    Gelfond, Jonathan
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 (09) : 1120 - 1133
  • [46] Causal inference with longitudinal outcomes and non-ignorable dropout: estimating the effect of living alone on cognitive decline
    Josefsson, Maria
    de Luna, Xavier
    Daniels, Michael J.
    Nyberg, Lars
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2016, 65 (01) : 131 - 144
  • [47] Bayesian semi-parametric G-computation for causal inference in a cohort study with MNAR dropout and death
    Josefsson, Maria
    Daniels, Michael J.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (02) : 398 - 414
  • [48] Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts
    Lin, Huiming
    Fu, Bo
    Qin, Guoyou
    Zhu, Zhongyi
    [J]. BIOMETRICS, 2017, 73 (04) : 1132 - 1139
  • [49] Causal effects in longitudinal studies: Definition and maximum likelihood estimation
    Neugebauer, Romain
    van der Laan, Mark J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1664 - 1675
  • [50] Causal inference in longitudinal studies with history-restricted marginal structural models
    Neugebauer, Romain
    van der Laan, Mark J.
    Joffe, Marshall M.
    Tager, Ira B.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 119 - 154