Periodic polynomial spline histopolation

被引:0
|
作者
Oja, Peeter [1 ]
Shah, Gul Wali [1 ]
机构
[1] Univ Tartu, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
关键词
histopolation; interpolation; periodic spline; existence and uniqueness of histopolant; CIRCULANT MATRICES; INTERPOLATION;
D O I
10.3176/proc.2018.3.08
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Periodic polynomial spline histopolation with arbitrary placement of histogram knots is studied. Spline knots are considered coinciding with histogram knots. The main problem is the existence and uniqueness of the histopolant for any degree of spline and for any number of partition points. The results for arbitrary grid give as particular cases known assertions for the uniform grid but different techniques are used.
引用
收藏
页码:246 / 251
页数:6
相关论文
共 50 条
  • [31] Cubic Polynomial as Alternatives Cubic Spline Interpolation
    Nazren, A. R. A.
    Yaakob, Shahrul Nizam
    Ngadiran, R.
    Wafi, N. M.
    Hisham, M. B.
    [J]. ADVANCED SCIENCE LETTERS, 2017, 23 (06) : 5069 - 5072
  • [32] On Implementation of Non-Polynomial Spline Approximation
    Belyakova, O. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (05) : 689 - 695
  • [33] Embedding of non-polynomial spline spaces
    Yuri K Dem’yanovich
    [J]. Mathematical Sciences, 2012, 6 (1)
  • [34] Extending B-spline by piecewise polynomial
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2020, 31 (4-5)
  • [35] Polynomial spline surfaces with rational linear transitions
    Peters, Joerg
    Sarov, Martin
    [J]. COMPUTERS & GRAPHICS-UK, 2015, 51 : 43 - 51
  • [36] ON 2 POLYNOMIAL SPACES ASSOCIATED WITH A BOX SPLINE
    DEBOOR, C
    DYN, N
    RON, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1991, 147 (02) : 249 - 267
  • [37] Additive coefficient modeling via polynomial spline
    Xue, Lan
    Yang, Lijian
    [J]. STATISTICA SINICA, 2006, 16 (04) : 1423 - 1446
  • [38] On Implementation of Non-Polynomial Spline Approximation
    O. V. Belyakova
    [J]. Computational Mathematics and Mathematical Physics, 2019, 59 : 689 - 695
  • [39] Embedding of non-polynomial spline spaces
    Dem'yanovich, Yuri K.
    [J]. MATHEMATICAL SCIENCES, 2012, 6 (01)
  • [40] POLYNOMIAL SPLINE CONFIDENCE BANDS FOR REGRESSION CURVES
    Wang, Jing
    Yang, Lijian
    [J]. STATISTICA SINICA, 2009, 19 (01) : 325 - 342