Brownian bridge;
B spline;
knots;
nonparametric regression;
quantile transformation;
LOCAL ASYMPTOTICS;
MAXIMAL DEVIATION;
TENSOR-PRODUCTS;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Asymptotically exact and conservative confidence bands are obtained for a nonparametric regression function, using piecewise constant and piecewise linear spline estimation, respectively. Compared to the pointwise confidence interval of Huang (2003), the confidence bands are inflated by a factor proportional to {log (n)}(1/2), with the same width order as the Nadaraya-Watson bands of Hardle (1989), and the local polynomial bands of Xia (1998) and Claeskens and Van Keilegom (2003). Simulation experiments corroborate the asymptotic theory. The linear spline band has been used to identify an appropriate polynomial trend for fossil data.
机构:
Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USAUniv Toledo, Dept Math & Stat, Toledo, OH 43606 USA
Shao, Q.
Yang, L.
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Sch Math Sci, Ctr Adv Stat & Econometr Res, Suzhou 215006, Peoples R China
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USAUniv Toledo, Dept Math & Stat, Toledo, OH 43606 USA
机构:
NE Normal Univ, KLASMOE, Changchun, Jilin, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Jilin, Peoples R ChinaNE Normal Univ, KLASMOE, Changchun, Jilin, Peoples R China
机构:
Grad Univ Adv Studies, Dept Stat Sci, 10-3 Midoricho, Tachikawa, Tokyo 1908562, JapanGrad Univ Adv Studies, Dept Stat Sci, 10-3 Midoricho, Tachikawa, Tokyo 1908562, Japan
Lu, Xiaolei
Kuriki, Satoshi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Stat Math, 10-3 Midoricho, Tachikawa, Tokyo 1908562, JapanGrad Univ Adv Studies, Dept Stat Sci, 10-3 Midoricho, Tachikawa, Tokyo 1908562, Japan