Isomorphism classes of concrete graph coverings

被引:9
|
作者
Feng, RQ [1 ]
Kwak, JH
Kim, J
Lee, J
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
[3] Catholic Univ Taegu Hyosung, Dept Math, Kyongsan 713702, South Korea
[4] Yeungnam Univ, Dept Math, Kyongsan 712749, South Korea
关键词
concrete graph coverings; voltage assignments; enumeration;
D O I
10.1137/S089548019630443X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hofmeister introduced the notion of a concrete (resp., concrete regular) covering of a graph G and gave formulas for enumerating the isomorphism classes of concrete (resp., concrete regular) coverings of G [Ars Combin., 32 (1991), pp. 121-127; SIAM J. Discrete Math., 8 (1995), pp. 51-61]. In this paper, we show that the number of the isomorphism classes of n-fold concrete (resp., concrete regular) coverings of G is equal to that of the isomorphism classes of n-fold (resp., regular) coverings of a new graph, the join G + infinity of G and an extra vertex infinity. As a consequence, we can enumerate the isomorphism classes of concrete (resp., concrete regular) coverings of a graph by using known formulas for enumerating the isomorphism classes of coverings (resp., regular coverings) of a graph.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] On graph isomorphism for restricted graph classes
    Koebler, Johannes
    LOGICAL APPROACHES TO COMPUTATIONAL BARRIERS, PROCEEDINGS, 2006, 3988 : 241 - 256
  • [2] Subgraph isomorphism in graph classes
    Kijima, Shuji
    Otachi, Yota
    Saitoh, Toshiki
    Uno, Takeaki
    DISCRETE MATHEMATICS, 2012, 312 (21) : 3164 - 3173
  • [3] ISOMORPHISM-CLASSES OF GRAPH BUNDLES
    KWAK, JH
    LEE, JE
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (04): : 747 - 761
  • [4] Subgraph Isomorphism on Graph Classes that Exclude a Substructure
    Hans L. Bodlaender
    Tesshu Hanaka
    Yasuaki Kobayashi
    Yusuke Kobayashi
    Yoshio Okamoto
    Yota Otachi
    Tom C. van der Zanden
    Algorithmica, 2020, 82 : 3566 - 3587
  • [5] Towards an Isomorphism Dichotomy for Hereditary Graph Classes
    Schweitzer, Pascal
    32ND INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2015), 2015, 30 : 689 - 702
  • [6] Towards an Isomorphism Dichotomy for Hereditary Graph Classes
    Pascal Schweitzer
    Theory of Computing Systems, 2017, 61 : 1084 - 1127
  • [7] Towards an Isomorphism Dichotomy for Hereditary Graph Classes
    Schweitzer, Pascal
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (04) : 1084 - 1127
  • [8] Subgraph Isomorphism on Graph Classes that Exclude a Substructure
    Bodlaender, Hans L.
    Hanaka, Tesshu
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Okamoto, Yoshio
    Otachi, Yota
    van der Zanden, Tom C.
    ALGORITHMICA, 2020, 82 (12) : 3566 - 3587
  • [9] On hypergraph and graph isomorphism with bounded color classes
    Arvind, V
    Köbler, J
    STACS 2006, PROCEEDINGS, 2006, 3884 : 384 - 395
  • [10] Isomorphism on Subgraph-Closed Graph Classes: A Complexity Dichotomy and Intermediate Graph Classes
    Otachi, Yota
    Schweitzer, Pascal
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 111 - 118