Subgraph Isomorphism on Graph Classes that Exclude a Substructure

被引:0
|
作者
Hans L. Bodlaender
Tesshu Hanaka
Yasuaki Kobayashi
Yusuke Kobayashi
Yoshio Okamoto
Yota Otachi
Tom C. van der Zanden
机构
[1] Utrecht University,
[2] Chuo University,undefined
[3] Kyoto University,undefined
[4] The University of Electro-Communications,undefined
[5] RIKEN Center for Advanced Intelligence Project,undefined
[6] Nagoya University,undefined
[7] Maastricht University,undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Subgraph isomorphism; Minor-free graphs; Parameterized complexity;
D O I
暂无
中图分类号
学科分类号
摘要
We study Subgraph Isomorphism on graph classes defined by a fixed forbidden graph. Although there are several ways for forbidding a graph, we observe that it is reasonable to focus on the minor relation since other well-known relations lead to either trivial or equivalent problems. When the forbidden minor is connected, we present a near dichotomy of the complexity of Subgraph Isomorphism with respect to the forbidden minor, where the only unsettled case is P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{5}$$\end{document}, the path of five vertices. We then also consider the general case of possibly disconnected forbidden minors. We show fixed-parameter tractable cases and randomized XP-time solvable cases parameterized by the size of the forbidden minor H. We also show that by slightly generalizing the tractable cases, the problem becomes NP-complete. All unsettle cases are equivalent to P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{5}$$\end{document} or the disjoint union of two P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{5}$$\end{document}’s. As a byproduct, we show that Subgraph Isomorphism is fixed-parameter tractable parameterized by vertex integrity. Using similar techniques, we also observe that Subgraph Isomorphism is fixed-parameter tractable parameterized by neighborhood diversity.
引用
收藏
页码:3566 / 3587
页数:21
相关论文
共 50 条
  • [1] Subgraph Isomorphism on Graph Classes that Exclude a Substructure
    Bodlaender, Hans L.
    Hanaka, Tesshu
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Okamoto, Yoshio
    Otachi, Yota
    van der Zanden, Tom C.
    ALGORITHMICA, 2020, 82 (12) : 3566 - 3587
  • [2] Subgraph isomorphism in graph classes
    Kijima, Shuji
    Otachi, Yota
    Saitoh, Toshiki
    Uno, Takeaki
    DISCRETE MATHEMATICS, 2012, 312 (21) : 3164 - 3173
  • [3] Isomorphism on Subgraph-Closed Graph Classes: A Complexity Dichotomy and Intermediate Graph Classes
    Otachi, Yota
    Schweitzer, Pascal
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 111 - 118
  • [4] Static Graph Challenge: Subgraph Isomorphism
    Samsi, Siddharth
    Gadepally, Vijay
    Hurley, Michael
    Jones, Michael
    Kao, Edward
    Mohindra, Sanjeev
    Monticciolo, Paul
    Reuther, Albert
    Smith, Steven
    Song, William
    Staheli, Diane
    Kepner, Jeremy
    2017 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2017,
  • [5] Polynomial-time algorithms for SUBGRAPH ISOMORPHISM in small graph classes of perfect graphs
    Konagaya, Matsuo
    Otachi, Yota
    Uehara, Ryuhei
    DISCRETE APPLIED MATHEMATICS, 2016, 199 : 37 - 45
  • [6] Polynomial-Time Algorithms for SUBGRAPH ISOMORPHISM in Small Graph Classes of Perfect Graphs
    Konagaya, Matsuo
    Otachi, Yota
    Uehara, Ryuhei
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2014), 2014, 8402 : 216 - 228
  • [7] On graph isomorphism for restricted graph classes
    Koebler, Johannes
    LOGICAL APPROACHES TO COMPUTATIONAL BARRIERS, PROCEEDINGS, 2006, 3988 : 241 - 256
  • [8] Research on subgraph isomorphism of uncertain attribute graph
    Liu, Fengchun
    Zhang, Chunying
    Zhang, Xue
    ICIC Express Letters, Part B: Applications, 2013, 4 (03): : 717 - 724
  • [9] Subgraph Isomorphism Search in Massive Graph Databases
    Nabti, Chemseddine
    Seba, Hamida
    IOTBD: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND BIG DATA, 2016, : 204 - 213
  • [10] Subgraph statistics in subcritical graph classes
    Drmota, Michael
    Ramos, Lander
    Rue, Juanjo
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (04) : 631 - 673