Isomorphism classes of concrete graph coverings

被引:9
|
作者
Feng, RQ [1 ]
Kwak, JH
Kim, J
Lee, J
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
[3] Catholic Univ Taegu Hyosung, Dept Math, Kyongsan 713702, South Korea
[4] Yeungnam Univ, Dept Math, Kyongsan 712749, South Korea
关键词
concrete graph coverings; voltage assignments; enumeration;
D O I
10.1137/S089548019630443X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hofmeister introduced the notion of a concrete (resp., concrete regular) covering of a graph G and gave formulas for enumerating the isomorphism classes of concrete (resp., concrete regular) coverings of G [Ars Combin., 32 (1991), pp. 121-127; SIAM J. Discrete Math., 8 (1995), pp. 51-61]. In this paper, we show that the number of the isomorphism classes of n-fold concrete (resp., concrete regular) coverings of G is equal to that of the isomorphism classes of n-fold (resp., regular) coverings of a new graph, the join G + infinity of G and an extra vertex infinity. As a consequence, we can enumerate the isomorphism classes of concrete (resp., concrete regular) coverings of a graph by using known formulas for enumerating the isomorphism classes of coverings (resp., regular coverings) of a graph.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [41] AN INVARIANT OF THE GRAPH ISOMORPHISM
    Wu, Huaan
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 1276 - 1279
  • [42] FOCALITY AND GRAPH ISOMORPHISM
    IMRICH, W
    SABIDUSSI, G
    DISCRETE MATHEMATICS, 1990, 81 (03) : 237 - 245
  • [43] The Graph Isomorphism Problem
    Grohe, Martin
    Schweitzer, Pascal
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 128 - 134
  • [44] Approximate Graph Isomorphism
    Arvind, Vikraman
    Koebler, Johannes
    Kuhnert, Sebastian
    Vasudev, Yadu
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 100 - 111
  • [45] On isomorphism classes of gauge groups
    Tsukuda, S
    TOPOLOGY AND ITS APPLICATIONS, 1998, 87 (03) : 173 - 187
  • [46] Isomorphism classes of uniform groups
    Nahler, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (04) : 1543 - 1558
  • [47] On the number of isomorphism classes of transversals
    VIPUL KAKKAR
    R P SHUKLA
    Proceedings - Mathematical Sciences, 2013, 123 : 345 - 359
  • [48] ISOMORPHISM TESTING IN HOOKUP CLASSES
    KLAWE, MM
    CORNEIL, DG
    PROSKUROWSKI, A
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02): : 260 - 274
  • [49] On the number of isomorphism classes of transversals
    Kakkar, Vipul
    Shukla, R. P.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03): : 345 - 359
  • [50] Isomorphism classes of authentication codes
    Feng, RQ
    Kwak, JH
    Lloyd, EK
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 69 (02) : 203 - 215