The fully adaptive GMRF anomaly detector for hyperspectral imagery

被引:0
|
作者
Thornton, SM [1 ]
Moura, JMF [1 ]
机构
[1] Carnegie Mellon Univ, ECE Dept, Pittsburgh, PA 15237 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The use of hyperspectral imagery for remote sensing detection applications has received attention recently due to the ability of the hyperspectral sensor to provide registered information in both space and frequency. However, this coupling of spatial and spectral information leads to an immense amount of data for which it has proven difficult to develop an efficient implementation of the Maximum-Likelihood (ML) detector. In this paper we present the Gauss-Markov random field (GMRF) detector which we have developed for detecting man-made anomalies in hyperspectral imagery. The GMRF detector is the first computationally efficient ML-detector for hyperspectral imagery. We compare the detection performance and the computational requirements of our detector implementation to the benchmark RX detection algorithm for hyperspectral imagery.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [31] Efficient anomaly detection and discrimination for hyperspectral imagery
    Ren, H
    Du, Q
    Jensen, J
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 234 - 241
  • [32] Anomaly detection based on the statistics of hyperspectral imagery
    Catterall, S
    [J]. IMAGING SPECTROMETRY X, 2004, 5546 : 171 - 178
  • [33] ANOMALY DETECTION WITH TRAINING DATA IN HYPERSPECTRAL IMAGERY
    Liu, Jun
    Feng, Yutong
    Liu, Weijian
    Orlando, Danilo
    Li, Hongbin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4836 - 4840
  • [34] Anomaly Detection Of Hyperspectral Imagery Based On KOSP
    Tian, Ye
    Zhao, Chun-hui
    [J]. ICFCSE 2011: 2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SUPPORTED EDUCATION, VOL 1, 2011, : 5 - 8
  • [35] Mixture models for anomaly detection in hyperspectral imagery
    Willis, CJ
    [J]. MILITARY REMOTE SENSING, 2004, 5613 : 119 - 128
  • [36] Hyperspectral imagery: Clutter adaptation in anomaly detection
    Schweizer, SM
    Moura, JMF
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) : 1855 - 1871
  • [37] Adaptive wavelet coding of hyperspectral imagery
    Abousleman, GP
    [J]. WAVELET APPLICATIONS III, 1996, 2762 : 545 - 556
  • [38] ADAPTIVE COMPRESSED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Hahn, Juergen
    Rosenkranz, Simon
    Zoubir, Abdelhak M.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [39] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [40] A projection pursuit algorithm for anomaly detection in hyperspectral imagery
    Malpica, Jose A.
    Rejas, Juan G.
    Alonso, Maria C.
    [J]. PATTERN RECOGNITION, 2008, 41 (11) : 3313 - 3327