The fully adaptive GMRF anomaly detector for hyperspectral imagery

被引:0
|
作者
Thornton, SM [1 ]
Moura, JMF [1 ]
机构
[1] Carnegie Mellon Univ, ECE Dept, Pittsburgh, PA 15237 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The use of hyperspectral imagery for remote sensing detection applications has received attention recently due to the ability of the hyperspectral sensor to provide registered information in both space and frequency. However, this coupling of spatial and spectral information leads to an immense amount of data for which it has proven difficult to develop an efficient implementation of the Maximum-Likelihood (ML) detector. In this paper we present the Gauss-Markov random field (GMRF) detector which we have developed for detecting man-made anomalies in hyperspectral imagery. The GMRF detector is the first computationally efficient ML-detector for hyperspectral imagery. We compare the detection performance and the computational requirements of our detector implementation to the benchmark RX detection algorithm for hyperspectral imagery.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [21] A tensor-based adaptive subspace detector for hyperspectral anomaly detection
    Zhang, Lili
    Cheng, Baozhi
    Deng, Yuwei
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (08) : 2366 - 2382
  • [22] Multiple Features and Isolation Forest-Based Fast Anomaly Detector for Hyperspectral Imagery
    Wang, Rong
    Nie, Feiping
    Wang, Zhen
    He, Fang
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6664 - 6676
  • [23] Anomaly detection in hyperspectral imagery: an overview
    Ben Salem, Manel
    Ettabaa, Karim Saheb
    Hamdi, Mohamed Ali
    [J]. 2014 FIRST INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS CONFERENCE (IPAS), 2014,
  • [24] Anomaly Discrimination and Classification for Hyperspectral Imagery
    Lee, Li-Chien
    Paylor, Drew
    Chang, Chein-, I
    [J]. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [25] Characterization of anomaly detection in hyperspectral imagery
    Chang, Chein-I
    Hsueh, Mingkai
    [J]. Sensor Review, 2006, 26 (02) : 137 - 146
  • [26] Anomaly detection in noisy hyperspectral imagery
    Riley, RA
    Newsom, RK
    Andrews, AK
    [J]. IMAGING SPECTROMETRY X, 2004, 5546 : 159 - 170
  • [27] Anomaly detection from hyperspectral imagery
    Stein, DWJ
    Beaven, SG
    Hoff, LE
    Winter, EM
    Schaum, AP
    Stocker, AD
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 58 - 69
  • [28] Anomaly detection and classification for hyperspectral imagery
    Chang, CI
    Chiang, SS
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06): : 1314 - 1325
  • [29] An Unsupervised Deep Hyperspectral Anomaly Detector
    Ma, Ning
    Peng, Yu
    Wang, Shaojun
    Leong, Philip H. W.
    [J]. SENSORS, 2018, 18 (03)
  • [30] Adaptive coding of hyperspectral imagery
    Abousleman, GP
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 2243 - 2246