The fully adaptive GMRF anomaly detector for hyperspectral imagery

被引:0
|
作者
Thornton, SM [1 ]
Moura, JMF [1 ]
机构
[1] Carnegie Mellon Univ, ECE Dept, Pittsburgh, PA 15237 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The use of hyperspectral imagery for remote sensing detection applications has received attention recently due to the ability of the hyperspectral sensor to provide registered information in both space and frequency. However, this coupling of spatial and spectral information leads to an immense amount of data for which it has proven difficult to develop an efficient implementation of the Maximum-Likelihood (ML) detector. In this paper we present the Gauss-Markov random field (GMRF) detector which we have developed for detecting man-made anomalies in hyperspectral imagery. The GMRF detector is the first computationally efficient ML-detector for hyperspectral imagery. We compare the detection performance and the computational requirements of our detector implementation to the benchmark RX detection algorithm for hyperspectral imagery.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [1] Performance analysis of the adaptive GMRF anomaly detector for hyperspectral imagery
    Thornton, SS
    Moura, JMF
    [J]. ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VI, 2000, 4049 : 30 - 41
  • [2] Adaptive causal anomaly detection for hyperspectral imagery
    Hsueh, M
    Chang, CI
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3222 - 3224
  • [3] The AsemiP anomaly detector: comparative performance in hyperspectral Imagery
    Rosario, D
    Galbraith, R
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XI, 2005, 5806 : 481 - 490
  • [4] Kernel adaptive subspace detector for hyperspectral imagery
    Kwon, H
    Nasrabadi, NM
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (02) : 271 - 275
  • [5] An Adaptive Kernel Method for Anomaly Detection in Hyperspectral Imagery
    Mei, Feng
    Zhao, Chunhui
    Hu, Hanjun
    Sun, Yan
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 874 - +
  • [6] Random-Selection-Based Anomaly Detector for Hyperspectral Imagery
    Du, Bo
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (05): : 1578 - 1589
  • [7] A Randomized Subspace Learning Based Anomaly Detector for Hyperspectral Imagery
    Sun, Weiwei
    Tian, Long
    Xu, Yan
    Du, Bo
    Du, Qian
    [J]. REMOTE SENSING, 2018, 10 (03):
  • [8] A Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery
    Diaz, Maria
    Guerra, Raul
    Horstrand, Pablo
    Lopez, Sebastian
    Sarmiento, Roberto
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 8968 - 8982
  • [9] A nonparametric F-distribution anomaly detector for hyperspectral imagery
    Rosario, Dalton
    [J]. 2005 IEEE AEROSPACE CONFERENCE, VOLS 1-4, 2005, : 2022 - 2029
  • [10] Fully Unsupervised Learning of Gaussian Mixtures for Anomaly Detection in Hyperspectral Imagery
    Veracini, Tiziana
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 596 - 601