Lie Bialgebras on k3 and Lagrange Varieties

被引:1
|
作者
Hong, Wei [1 ,2 ]
Liu, Zhangju [1 ,2 ]
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
关键词
Lie bialgebra; Lagrange subalgebra; POISSON HOMOGENEOUS SPACES; CLASSIFICATION; SUBALGEBRAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lie bialgebras on k(3) and the corresponding Lagrange varieties are classified by means of a pair of quadratic forms on k(4), where k is a field whose characteristic is not 2. It turns out that any Lagrange variety is composed of two (possibly degenerate) quadratic surfaces in kP(3) defined by the above quadratic forms respectively.
引用
收藏
页码:639 / 659
页数:21
相关论文
共 50 条
  • [41] Polydifferential Lie bialgebras and graph complexesPolydifferential Lie bialgebras and graph complexesV. Wolff
    Vincent Wolff
    Letters in Mathematical Physics, 115 (2)
  • [42] Grothendieck-Messing deformation theory for varieties of K3 type
    Langer, Andreas
    Zink, Thomas
    TUNISIAN JOURNAL OF MATHEMATICS, 2019, 1 (04) : 455 - +
  • [43] Twisted tensor products of K3 with K3
    Arce, Jack
    Guccione, Jorge A.
    Guccione, Juan J.
    Valqui, Christian
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3614 - 3634
  • [44] Lie bialgebras arising from alternative and Jordan bialgebras
    Goncharov, M. E.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (02) : 215 - 228
  • [45] On Lie 2-bialgebras
    Qiao Yu
    Zhao Jia
    CommunicationsinMathematicalResearch, 2018, 34 (01) : 54 - 64
  • [46] Braided-Lie bialgebras
    Majid, S
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) : 329 - 356
  • [47] Quantization of Lie bialgebras revisited
    Pavol Ševera
    Selecta Mathematica, 2016, 22 : 1563 - 1581
  • [48] On Quantization Functors of Lie Bialgebras
    B. Enriquez
    Acta Applicandae Mathematica, 2002, 73 : 133 - 140
  • [49] On Quantizable Odd Lie Bialgebras
    Anton Khoroshkin
    Sergei Merkulov
    Thomas Willwacher
    Letters in Mathematical Physics, 2016, 106 : 1199 - 1215
  • [50] Hamiltonian type lie bialgebras
    Xin, Bin
    Song, Guang-ai
    Su, Yu-cai
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1267 - 1279