Sufficient dimension reduction and instrument search for data with nonignorable nonresponse

被引:9
|
作者
Zhao, Puying [1 ]
Wang, Lei [2 ]
Shaw, Jun [3 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming, Yunnan, Peoples R China
[2] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Covariate dimension reduction; estimation; identifiability; instrument; nonparametric kernel regression; semiparametric propensity; ASYMPTOTIC THEORY; MEAN FUNCTIONALS; MISSING-DATA; REGRESSION;
D O I
10.3150/20-BEJ1260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a response variable subject to nonignorable nonresponse and a fully observed covariate vector. The purpose of our study is threefold. First, we study how to extend nonparametric sufficient dimension reduction to data with nonignorable nonresponse. Second, we utilize sufficient dimension reduction to search an instrument, a linear function of covariates that is related to the response variable but can be excluded from the propensity of nonignorable nonresponse, for the purpose of identifying unknown parameters in a semiparametric propensity and a nonparametric distribution of response variable and covariates. Third, we establish asymptotic results for parameter estimators based on sufficient dimension reduction and instrument search, and investigate the effect on the limiting distribution of parameter estimators due to instrument search. We evaluate the performance of proposed estimators in a Monte Carlo study and illustrate our method in an application to AIDS Clinical Trials Group Protocol 175 data.
引用
收藏
页码:930 / 945
页数:16
相关论文
共 50 条