Sufficient dimension reduction and instrument search for data with nonignorable nonresponse

被引:9
|
作者
Zhao, Puying [1 ]
Wang, Lei [2 ]
Shaw, Jun [3 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming, Yunnan, Peoples R China
[2] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Covariate dimension reduction; estimation; identifiability; instrument; nonparametric kernel regression; semiparametric propensity; ASYMPTOTIC THEORY; MEAN FUNCTIONALS; MISSING-DATA; REGRESSION;
D O I
10.3150/20-BEJ1260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a response variable subject to nonignorable nonresponse and a fully observed covariate vector. The purpose of our study is threefold. First, we study how to extend nonparametric sufficient dimension reduction to data with nonignorable nonresponse. Second, we utilize sufficient dimension reduction to search an instrument, a linear function of covariates that is related to the response variable but can be excluded from the propensity of nonignorable nonresponse, for the purpose of identifying unknown parameters in a semiparametric propensity and a nonparametric distribution of response variable and covariates. Third, we establish asymptotic results for parameter estimators based on sufficient dimension reduction and instrument search, and investigate the effect on the limiting distribution of parameter estimators due to instrument search. We evaluate the performance of proposed estimators in a Monte Carlo study and illustrate our method in an application to AIDS Clinical Trials Group Protocol 175 data.
引用
收藏
页码:930 / 945
页数:16
相关论文
共 50 条
  • [31] Optimal pseudolikelihood estimation in the analysis of multivariate missing data with nonignorable nonresponse
    Zhao, Jiwei
    Ma, Yanyuan
    BIOMETRIKA, 2018, 105 (02) : 479 - 486
  • [32] No News Is News: Nonignorable Nonresponse in Roll-Call Data Analysis
    Rosas, Guillermo
    Shomer, Yael
    Haptonstahl, Stephen R.
    AMERICAN JOURNAL OF POLITICAL SCIENCE, 2015, 59 (02) : 511 - 528
  • [33] Longitudinal data analysis using sufficient dimension reduction method
    Li, Lexin
    Yin, Xiangrong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4106 - 4115
  • [34] Sufficient dimension reduction for conditional quantiles with alternative types of data
    Christou, Eliana
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (02) : 300 - 317
  • [35] Poisson Inverse Regression for sufficient dimension reduction in text data
    Gaba, Amarjit
    Artemiou, Andreas
    STATISTICS AND ITS INTERFACE, 2025, 18 (03) : 389 - 397
  • [36] Sufficient dimension reduction via distance covariance for survival data
    Cui, Wenquan
    He, Xu
    Cheng, Haoyang
    Xu, Jianjun
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2025, 23 (01)
  • [37] Dimension-reduced empirical likelihood estimation and inference for M-estimators with nonignorable nonresponse
    Sun, Siying
    Yang, Yaohong
    Wang, Lei
    STATISTICS, 2022, 56 (02) : 243 - 270
  • [38] Semiparametric estimation in generalized additive partial linear models with nonignorable nonresponse data
    Du, Jierui
    Cui, Xia
    STATISTICAL PAPERS, 2024, 65 (05) : 3235 - 3259
  • [39] Tensor sufficient dimension reduction
    Zhong, Wenxuan
    Xing, Xin
    Suslick, Kenneth
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (03): : 178 - 184
  • [40] Transformed sufficient dimension reduction
    Wang, T.
    Guo, X.
    Zhu, L.
    Xu, P.
    BIOMETRIKA, 2014, 101 (04) : 815 - 829