Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm

被引:12
|
作者
Bruns, Angelika [1 ]
Benner, Peter [2 ]
机构
[1] Robert Bosch GmbH, D-70839 Gerlingen, Germany
[2] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
关键词
34K17; 93A15; stability preservation; finite element modelling; thermal heat transfer; parametric model order reduction;
D O I
10.1080/13873954.2014.924534
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Bilinear Interpolatory Rational Krylov Algorithm (BIRKA; P. Benner and T. Breiten, Interpolation-based H-2-model reduction of bilinear control systems, SIAM J. Matrix Anal. Appl. 33 (2012), pp. 859-885. doi:10.1137/110836742) is a recently developed method for Model Order Reduction (MOR) of bilinear systems. Here, it is used and further developed for a certain class of parametric systems. As BIRKA does not preserve stability, two different approaches generating stable reduced models are presented. In addition, the convergence for a modified version of BIRKA for large systems is analysed and a method for detecting divergence possibly resulting from this modification is proposed. The behaviour of the algorithm is analysed using a finite element model for the thermal analysis of an electrical motor. The reduction of two different motor models, incorporating seven and thirteen different physical parameters, is performed.
引用
下载
收藏
页码:103 / 129
页数:27
相关论文
共 50 条
  • [41] Analysis of frequency selective surfaces through the blazing onset using rational Krylov model-order reduction and Woodbury singularity extraction
    Weile, DS
    Michielssen, E
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (10) : 1470 - 1478
  • [42] Model Order Reduction Using Genetic Algorithm
    Adel, Ahmed
    Salah, Khaled
    2016 IEEE 7TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS MOBILE COMMUNICATION CONFERENCE (UEMCON), 2016,
  • [43] A parametric model order reduction technique for poroelastic finite element models
    Lappano, Ettore
    Polanz, Markus
    Desmet, Wim
    Mundo, Domenico
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (04): : 2376 - 2385
  • [44] A Krylov subspace method based on multi-moment matching for model order reduction of large-scale second order bilinear systems
    Vakilzadeh, M.
    Eghtesad, M.
    Vatankhah, R.
    Mahmoodi, M.
    APPLIED MATHEMATICAL MODELLING, 2018, 60 : 739 - 757
  • [45] Rational Krylov methods for optimal L2 model reduction
    Magruder, Caleb
    Beattie, Christopher
    Gugercin, Serkan
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6797 - 6802
  • [46] Delphi-like Dynamical Compact Thermal Models using Model Order Reduction
    Rogie, Brice
    Codecasa, Lorenzo
    Monier-Vinard, Eric
    Bissuel, Valentin
    Laraqi, Najib
    Daniel, Olivier
    D'Amore, Dario
    Magnani, Alessandro
    d'Alessandro, Vincenzo
    Rinaldi, Niccolo
    2017 23RD INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC), 2017,
  • [47] An algorithm to improve parameterizations of rational Bezier surfaces using rational bilinear reparameterization
    Yang, Yi-Jun
    Zeng, Wei
    Yang, Cheng-Lei
    Deng, Bailin
    Meng, Xiang-Xu
    Iyengar, S. Sitharama
    COMPUTER-AIDED DESIGN, 2013, 45 (03) : 628 - 638
  • [48] Model order reduction for dynamic thermal models of LED packages
    Schilders, W. H. A.
    Lungten, S.
    2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,
  • [49] Krylov Subspace Model Order Reduction for FE seismic analysis
    Amin, Mohd N.
    Krisnamoorthy, R. R.
    IEEE SYMPOSIUM ON BUSINESS, ENGINEERING AND INDUSTRIAL APPLICATIONS (ISBEIA 2012), 2012, : 239 - 243
  • [50] Krylov Subspace Based Model Order Reduction of Distribution Networks
    Garrido, Sebastian E. S.
    McCann, Roy A.
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,