Rational Krylov methods for optimal L2 model reduction

被引:6
|
作者
Magruder, Caleb [1 ]
Beattie, Christopher [1 ]
Gugercin, Serkan [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
SYSTEMS;
D O I
10.1109/CDC.2010.5717454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unstable dynamical systems can be viewed from a variety of perspectives. We discuss the potential of an input-output map associated with an unstable system to represent a bounded map from L-2 (R) to itself and then develop criteria for optimal reduced order approximations to the original (unstable) system with respect to an L-2-induced Hilbert-Schmidt norm. Our optimality criteria extend the Meier-Luenberger interpolation conditions for optimal H-2 approximation of stable dynamical systems. Based on this interpolation framework, we describe an iteratively corrected rational Krylov algorithm for L-2 model reduction. A numerical example involving a hard-to-approximate full-order model illustrates the effectiveness of the proposed approach.
引用
收藏
页码:6797 / 6802
页数:6
相关论文
共 50 条
  • [1] PARALLEL IMPLEMENTATION OF ITERATIVE RATIONAL KRYLOV METHODS FOR MODEL ORDER REDUCTION
    Yetkin, E. Fatih
    Dag, Hasan
    2009 FIFTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTIONS IN SYSTEM ANALYSIS, DECISION AND CONTROL, 2010, : 291 - +
  • [2] Optimal weighted L2 model reduction of delay systems
    Zhang, LQ
    Lam, J
    INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (01) : 39 - 48
  • [3] A NEW ALGORITHM FOR L2 OPTIMAL-MODEL REDUCTION
    SPANOS, JT
    MILMAN, MH
    MINGORI, DL
    AUTOMATICA, 1992, 28 (05) : 897 - 909
  • [4] A convergent algorithm for L2 optimal MIMO model reduction
    Ferrante, A
    Krajewsky, W
    Lepschy, A
    Viaro, U
    AMST'99: ADVANCED MANUFACTURING SYSTEMS AND TECHNOLOGY, 1999, (406): : 651 - 657
  • [5] A new approach to frequency weighted L2 optimal model reduction
    Huang, XX
    Yan, WY
    Teo, KL
    INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (12) : 1239 - 1246
  • [6] L2 Model reduction and variance reduction
    Tjärnström, F
    Ljung, L
    AUTOMATICA, 2002, 38 (09) : 1517 - 1530
  • [7] Rational Krylov for eigenvalue computation and model order reduction
    Olsson, K. Henrik A.
    Ruhe, Axel
    BIT NUMERICAL MATHEMATICS, 2006, 46 (Suppl 1) : S99 - S111
  • [8] Rational Krylov algorithms for eigenvalue computation and model reduction
    Ruhe, A
    Skoogh, D
    APPLIED PARALLEL COMPUTING: LARGE SCALE SCIENTIFIC AND INDUSTRIAL PROBLEMS, 1998, 1541 : 491 - 502
  • [9] Rational Krylov for eigenvalue computation and model order reduction
    K. Henrik A. Olsson
    Axel Ruhe
    BIT Numerical Mathematics, 2006, 46 : 99 - 111
  • [10] Balanced truncation-rational Krylov methods for model reduction in large scale dynamical systems
    Abidi, O.
    Jbilou, K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 525 - 540