Anomalous diffusion in generalized Dykhne model

被引:8
|
作者
Dvoretskaya, O. A. [1 ]
Kondratenko, P. S.
Matveev, L. V.
机构
[1] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia
基金
俄罗斯基础研究基金会;
关键词
TRANSPORT; PERCOLATION;
D O I
10.1134/S1063776110010085
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Contaminant transport is investigated in the generalized Dykhne model differing from the original Dykhne model by the presence of advection in the high-permeability medium. An analysis is presented of transport regimes and concentration tail behavior in the high-permeability medium. It is found that the transport regimes include anomalous ones: subdiffusion and quasi-diffusion. A difference is revealed between longitudinal and transverse transport. Regime change over time leads to multiple-regime long-distance asymptotic behavior of concentration distributions. An analogy is drawn between the problems examined here and transport through comb structures.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [21] Anomalous two-state model for anomalous diffusion
    Shushin, AI
    [J]. PHYSICAL REVIEW E, 2001, 64 (05): : 12
  • [22] Generalized Langevin equations: Anomalous diffusion and probability distributions
    Porra, JM
    Wang, KG
    Masoliver, J
    [J]. PHYSICAL REVIEW E, 1996, 53 (06): : 5872 - 5881
  • [23] Homogenization for Generalized Langevin Equations with Applications to Anomalous Diffusion
    Soon Hoe Lim
    Jan Wehr
    Maciej Lewenstein
    [J]. Annales Henri Poincaré, 2020, 21 : 1813 - 1871
  • [24] From generalized Langevin stochastic dynamics to anomalous diffusion
    Ferreira, Rogelma M. S.
    [J]. PHYSICAL REVIEW E, 2022, 106 (05)
  • [25] Anomalous diffusion and quasistationarity in the HMF model
    Pluchino, Alessandro
    Rapisarda, Andrea
    [J]. COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 129 - 136
  • [26] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    [J]. PHYSICA A, 1994, 211 (01): : 13 - 24
  • [27] Anomalous diffusion in a running sandpile model
    Carreras, BA
    Lynch, VE
    Newman, DE
    Zaslavsky, GM
    [J]. PHYSICAL REVIEW E, 1999, 60 (04) : 4770 - 4778
  • [28] The solutions of certain generalized anomalous diffusion equations of fractional order
    B. B. Jaimini
    Hemlata Saxena
    [J]. Astrophysics and Space Science, 2010, 330 : 289 - 293
  • [29] The solutions of certain generalized anomalous diffusion equations of fractional order
    Jaimini, B. B.
    Saxena, Hemlata
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2010, 330 (02) : 289 - 293
  • [30] On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
    Camargo, R. Figueiredo
    de Oliveira, E. Capelas
    Vaz, J., Jr.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)