Homogenization for Generalized Langevin Equations with Applications to Anomalous Diffusion

被引:0
|
作者
Soon Hoe Lim
Jan Wehr
Maciej Lewenstein
机构
[1] Nordita,Department of Mathematics and Program in Applied Mathematics
[2] KTH Royal Institute of Technology and Stockholm University,ICFO
[3] University of Arizona, Institut de Ciéncies Fotóniques
[4] The Barcelona Institute of Science and Technology,undefined
[5] ICREA,undefined
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
Primary 60H10; Secondary 82C31;
D O I
暂无
中图分类号
学科分类号
摘要
We study homogenization for a class of generalized Langevin equations (GLEs) with state-dependent coefficients and exhibiting multiple time scales. In addition to the small mass limit, we focus on homogenization limits, which involve taking to zero the inertial time scale and, possibly, some of the memory time scales and noise correlation time scales. The latter are meaningful limits for a class of GLEs modeling anomalous diffusion. We find that, in general, the limiting stochastic differential equations for the slow degrees of freedom contain non-trivial drift correction terms and are driven by non-Markov noise processes. These results follow from a general homogenization theorem stated and proven here. We illustrate them using stochastic models of particle diffusion.
引用
收藏
页码:1813 / 1871
页数:58
相关论文
共 50 条
  • [1] Homogenization for Generalized Langevin Equations with Applications to Anomalous Diffusion
    Lim, Soon Hoe
    Wehr, Jan
    Lewenstein, Maciej
    [J]. ANNALES HENRI POINCARE, 2020, 21 (06): : 1813 - 1871
  • [2] Generalized Langevin equations: Anomalous diffusion and probability distributions
    Porra, JM
    Wang, KG
    Masoliver, J
    [J]. PHYSICAL REVIEW E, 1996, 53 (06): : 5872 - 5881
  • [3] Anomalous diffusion and the generalized Langevin equation
    McKinley S.A.
    Nguyen H.D.
    [J]. SIAM Journal on Mathematical Analysis, 2018, 50 (05) : 5119 - 5160
  • [4] Anomalous diffusion in a generalized Langevin equation
    Fa, Kwok Sau
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [5] Homogenization for a Class of Generalized Langevin Equations with an Application to Thermophoresis
    Lim, Soon Hoe
    Wehr, Jan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (03) : 656 - 691
  • [6] Homogenization for a Class of Generalized Langevin Equations with an Application to Thermophoresis
    Soon Hoe Lim
    Jan Wehr
    [J]. Journal of Statistical Physics, 2019, 174 : 656 - 691
  • [7] Anomalous diffusion and generalized diffusion equations
    Sokolov, IM
    Chechkin, AV
    [J]. FLUCTUATION AND NOISE LETTERS, 2005, 5 (02): : L275 - L282
  • [8] From generalized Langevin stochastic dynamics to anomalous diffusion
    Ferreira, Rogelma M. S.
    [J]. PHYSICAL REVIEW E, 2022, 106 (05)
  • [9] On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
    Camargo, R. Figueiredo
    de Oliveira, E. Capelas
    Vaz, J., Jr.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [10] Different diffusive regimes, generalized Langevin and diffusion equations
    Tateishi, A. A.
    Lenzi, E. K.
    da Silva, L. R.
    Ribeiro, H. V.
    Picoli, S., Jr.
    Mendes, R. S.
    [J]. PHYSICAL REVIEW E, 2012, 85 (01):