Anomalous diffusion and generalized diffusion equations

被引:2
|
作者
Sokolov, IM
Chechkin, AV
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Kharkov Phys & Technol Inst, Natl Sci Ctr, Inst Theoret Phys, UA-61108 Kharkov, Ukraine
来源
FLUCTUATION AND NOISE LETTERS | 2005年 / 5卷 / 02期
关键词
anomalous diffusion; fractional diffusion equations; distributed-order derivatives;
D O I
10.1142/S0219477505002653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. The forms of such equations might differ with respect to the position of the corresponding fractional operator in addition to or instead of the whole-number derivative in the Fick's equation. For processes lacking simple scaling the corresponding description may be given by distributed-order equations. In the present paper different forms of distributed-order diffusion equations are considered. The properties of their solutions are discussed for a simple special case.
引用
收藏
页码:L275 / L282
页数:8
相关论文
共 50 条
  • [1] Homogenization for Generalized Langevin Equations with Applications to Anomalous Diffusion
    Lim, Soon Hoe
    Wehr, Jan
    Lewenstein, Maciej
    [J]. ANNALES HENRI POINCARE, 2020, 21 (06): : 1813 - 1871
  • [2] Generalized Langevin equations: Anomalous diffusion and probability distributions
    Porra, JM
    Wang, KG
    Masoliver, J
    [J]. PHYSICAL REVIEW E, 1996, 53 (06): : 5872 - 5881
  • [3] Homogenization for Generalized Langevin Equations with Applications to Anomalous Diffusion
    Soon Hoe Lim
    Jan Wehr
    Maciej Lewenstein
    [J]. Annales Henri Poincaré, 2020, 21 : 1813 - 1871
  • [4] A Generalized Diffusion Equation: Solutions and Anomalous Diffusion
    Lenzi, Ervin K.
    Somer, Aloisi
    Zola, Rafael S.
    da Silva, Luciano R.
    Lenzi, Marcelo K.
    [J]. FLUIDS, 2023, 8 (02)
  • [5] Generalized diffusion equation for anisotropic anomalous diffusion
    Sellers, S.
    Barker, J. A.
    [J]. PHYSICAL REVIEW E, 2006, 74 (06):
  • [6] The solutions of certain generalized anomalous diffusion equations of fractional order
    B. B. Jaimini
    Hemlata Saxena
    [J]. Astrophysics and Space Science, 2010, 330 : 289 - 293
  • [7] The solutions of certain generalized anomalous diffusion equations of fractional order
    Jaimini, B. B.
    Saxena, Hemlata
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2010, 330 (02) : 289 - 293
  • [8] Generalized Cattaneo (telegrapher's) equations in modeling anomalous diffusion phenomena
    Gorska, K.
    Horzela, A.
    Lenzi, E. K.
    Pagnini, G.
    Sandev, T.
    [J]. PHYSICAL REVIEW E, 2020, 102 (02)
  • [9] Anomalous diffusion in generalized Dykhne model
    Dvoretskaya, O. A.
    Kondratenko, P. S.
    Matveev, L. V.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 110 (01) : 58 - 66
  • [10] Anomalous diffusion and the generalized Langevin equation
    McKinley S.A.
    Nguyen H.D.
    [J]. SIAM Journal on Mathematical Analysis, 2018, 50 (05) : 5119 - 5160