Anomalous diffusion in generalized Dykhne model

被引:8
|
作者
Dvoretskaya, O. A. [1 ]
Kondratenko, P. S.
Matveev, L. V.
机构
[1] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia
基金
俄罗斯基础研究基金会;
关键词
TRANSPORT; PERCOLATION;
D O I
10.1134/S1063776110010085
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Contaminant transport is investigated in the generalized Dykhne model differing from the original Dykhne model by the presence of advection in the high-permeability medium. An analysis is presented of transport regimes and concentration tail behavior in the high-permeability medium. It is found that the transport regimes include anomalous ones: subdiffusion and quasi-diffusion. A difference is revealed between longitudinal and transverse transport. Regime change over time leads to multiple-regime long-distance asymptotic behavior of concentration distributions. An analogy is drawn between the problems examined here and transport through comb structures.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [1] Anomalous diffusion in generalized Dykhne model
    O. A. Dvoretskaya
    P. S. Kondratenko
    L. V. Matveev
    [J]. Journal of Experimental and Theoretical Physics, 2010, 110 : 58 - 66
  • [2] Anomalous diffusion and generalized diffusion equations
    Sokolov, IM
    Chechkin, AV
    [J]. FLUCTUATION AND NOISE LETTERS, 2005, 5 (02): : L275 - L282
  • [3] Generalized Fick law for anomalous diffusion in the multidimensional comb model
    V. E. Arkhincheev
    [J]. JETP Letters, 2007, 86 : 508 - 511
  • [4] Generalized Fick law for anomalous diffusion in the multidimensional comb model
    Arkhincheev, V. E.
    [J]. JETP LETTERS, 2007, 86 (08) : 508 - 511
  • [5] A Generalized Diffusion Equation: Solutions and Anomalous Diffusion
    Lenzi, Ervin K.
    Somer, Aloisi
    Zola, Rafael S.
    da Silva, Luciano R.
    Lenzi, Marcelo K.
    [J]. FLUIDS, 2023, 8 (02)
  • [6] Generalized diffusion equation for anisotropic anomalous diffusion
    Sellers, S.
    Barker, J. A.
    [J]. PHYSICAL REVIEW E, 2006, 74 (06):
  • [7] Anomalous diffusion and the generalized Langevin equation
    McKinley S.A.
    Nguyen H.D.
    [J]. SIAM Journal on Mathematical Analysis, 2018, 50 (05) : 5119 - 5160
  • [8] Anomalous diffusion in a generalized Langevin equation
    Fa, Kwok Sau
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [9] Generalized Langevin equation formulation for anomalous diffusion in the Ising model at the critical temperature
    Zhong, Wei
    Panja, Debabrata
    Barkema, Gerard T.
    Ball, Robin C.
    [J]. PHYSICAL REVIEW E, 2018, 98 (01)
  • [10] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308