On BV functions and essentially bounded divergence-measure fields in metric spaces

被引:14
|
作者
Buffa, Vito [1 ]
Comi, Giovanni E. [2 ]
Miranda, Michele Jr Jr [3 ]
机构
[1] Smiling Int Sch, Via Roversella 2, I-44121 Ferrara, Italy
[2] Univ Hamburg, Fachbereich Math, Fak Math Informat & Nat Wissensch, Bundesstr 55, D-20146 Hamburg, Germany
[3] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
基金
芬兰科学院;
关键词
Functions of bounded variation; divergence-measure fields; Gauss-Green formula; normal traces; metric measure spaces; curvature dimension condition; cotangent module; GAUSS-GREEN FORMULAS; LIPSCHITZ FUNCTIONS; FINITE PERIMETER; CAUCHY FLUXES; SETS; EQUATIONS; THEOREM;
D O I
10.4171/RMI/1291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By employing the differential structure recently developed by N. Gigli, we first give a notion of functions of bounded variation (BV) in terms of suitable vector fields on a complete and separable metric measure space (X, d, mu) equipped with a non-negative Radon measure mu finite on bounded sets. Then, we extend the concept of divergence-measure vector fields D M-p (X) for any p is an element of [1, infinity] and, by simply requiring in addition that the metric space is locally compact, we determine an appropriate class of domains for which it is possible to obtain a Gauss-Green formula in terms of the normal trace of a D M-infinity (X) vector field. This differential machinery is also the natural framework to specialize our analysis for RCD(K, infinity) spaces, where we exploit the underlying geometry to determine the Leibniz rules for D M-infinity (X) and ultimately to extend our discussion on the Gauss-Green formulas.
引用
收藏
页码:883 / 946
页数:64
相关论文
共 50 条
  • [21] Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws
    Gui-Qiang Chen
    Monica Torres
    Archive for Rational Mechanics and Analysis, 2005, 175 : 245 - 267
  • [22] ASYMPTOTIC BEHAVIOR OF BV FUNCTIONS AND SETS OF FINITE PERIMETER IN METRIC MEASURE SPACES
    Eriksson-Bique, Sylvester
    Gill, James T.
    Lahti, Panu
    Shanmugalingam, Nageswari
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 8201 - 8247
  • [23] Extended divergence-measure fields and the Euler equations for gas dynamics
    Chen, GQ
    Frid, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (02) : 251 - 280
  • [24] A COMPACTNESS RESULT FOR BV FUNCTIONS IN METRIC SPACES
    Don, Sebastiano
    Vittone, Davide
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 329 - 339
  • [25] Approximation of BV by SBV functions in metric spaces
    Lahti, Panu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (11)
  • [26] Measures in the dual of RV: perimeter bounds and relations with divergence-measure fields
    Comi, Giovanni E.
    Leonardi, Gian Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 251
  • [27] Fractional maximal functions and mean oscillation on bounded doubling metric measure spaces
    Gibara, Ryan
    Kline, Josh
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)
  • [28] Metric Spaces of Bounded Analytical Functions
    Makhmutov S.A.
    Makhmutova M.S.
    Journal of Mathematical Sciences, 2019, 241 (6) : 750 - 759
  • [29] Sobolev, BV and perimeter extensions in metric measure spaces
    Caputo, Emanuele
    Koivu, Jesse
    Rajala, Tapio
    ANNALES FENNICI MATHEMATICI, 2024, 49 (01): : 135 - 165
  • [30] Fractional divergence-measure fields, Leibniz rule and Gauss-Green formula
    Comi, Giovanni E.
    Stefani, Giorgio
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (02): : 259 - 281