On BV functions and essentially bounded divergence-measure fields in metric spaces

被引:14
|
作者
Buffa, Vito [1 ]
Comi, Giovanni E. [2 ]
Miranda, Michele Jr Jr [3 ]
机构
[1] Smiling Int Sch, Via Roversella 2, I-44121 Ferrara, Italy
[2] Univ Hamburg, Fachbereich Math, Fak Math Informat & Nat Wissensch, Bundesstr 55, D-20146 Hamburg, Germany
[3] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
基金
芬兰科学院;
关键词
Functions of bounded variation; divergence-measure fields; Gauss-Green formula; normal traces; metric measure spaces; curvature dimension condition; cotangent module; GAUSS-GREEN FORMULAS; LIPSCHITZ FUNCTIONS; FINITE PERIMETER; CAUCHY FLUXES; SETS; EQUATIONS; THEOREM;
D O I
10.4171/RMI/1291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By employing the differential structure recently developed by N. Gigli, we first give a notion of functions of bounded variation (BV) in terms of suitable vector fields on a complete and separable metric measure space (X, d, mu) equipped with a non-negative Radon measure mu finite on bounded sets. Then, we extend the concept of divergence-measure vector fields D M-p (X) for any p is an element of [1, infinity] and, by simply requiring in addition that the metric space is locally compact, we determine an appropriate class of domains for which it is possible to obtain a Gauss-Green formula in terms of the normal trace of a D M-infinity (X) vector field. This differential machinery is also the natural framework to specialize our analysis for RCD(K, infinity) spaces, where we exploit the underlying geometry to determine the Leibniz rules for D M-infinity (X) and ultimately to extend our discussion on the Gauss-Green formulas.
引用
收藏
页码:883 / 946
页数:64
相关论文
共 50 条
  • [31] A Notion of Fine Continuity for BV Functions on Metric Spaces
    Lahti, Panu
    POTENTIAL ANALYSIS, 2017, 46 (02) : 279 - 294
  • [32] A Notion of Fine Continuity for BV Functions on Metric Spaces
    Panu Lahti
    Potential Analysis, 2017, 46 : 279 - 294
  • [33] Strict and pointwise convergence of BV functions in metric spaces
    Lahti, Panu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1005 - 1021
  • [34] Directional uniform rotundity in spaces of essentially bounded vector functions
    Fernandez, M
    Palacios, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) : 1323 - 1328
  • [35] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [36] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [37] On nonlinear metric spaces of functions of bounded variation
    Baranov, V. N.
    Rodionov, V., I
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2022, 32 (03): : 341 - 360
  • [38] Functions of bounded variation on "good" metric spaces
    Miranda, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08): : 975 - 1004
  • [39] BV and Sobolev homeomorphisms between metric measure spaces and the plane
    Brena, Camillo
    Campbell, Daniel
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, : 363 - 377
  • [40] BV Functions with Respect to a Measure and Relaxation of Metric Integral Functionals
    Bellettini, Giovanni
    Bouchitte, Guy
    Fragala, Ilaria
    JOURNAL OF CONVEX ANALYSIS, 1999, 6 (02) : 349 - 366