On BV functions and essentially bounded divergence-measure fields in metric spaces

被引:14
|
作者
Buffa, Vito [1 ]
Comi, Giovanni E. [2 ]
Miranda, Michele Jr Jr [3 ]
机构
[1] Smiling Int Sch, Via Roversella 2, I-44121 Ferrara, Italy
[2] Univ Hamburg, Fachbereich Math, Fak Math Informat & Nat Wissensch, Bundesstr 55, D-20146 Hamburg, Germany
[3] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
基金
芬兰科学院;
关键词
Functions of bounded variation; divergence-measure fields; Gauss-Green formula; normal traces; metric measure spaces; curvature dimension condition; cotangent module; GAUSS-GREEN FORMULAS; LIPSCHITZ FUNCTIONS; FINITE PERIMETER; CAUCHY FLUXES; SETS; EQUATIONS; THEOREM;
D O I
10.4171/RMI/1291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By employing the differential structure recently developed by N. Gigli, we first give a notion of functions of bounded variation (BV) in terms of suitable vector fields on a complete and separable metric measure space (X, d, mu) equipped with a non-negative Radon measure mu finite on bounded sets. Then, we extend the concept of divergence-measure vector fields D M-p (X) for any p is an element of [1, infinity] and, by simply requiring in addition that the metric space is locally compact, we determine an appropriate class of domains for which it is possible to obtain a Gauss-Green formula in terms of the normal trace of a D M-infinity (X) vector field. This differential machinery is also the natural framework to specialize our analysis for RCD(K, infinity) spaces, where we exploit the underlying geometry to determine the Leibniz rules for D M-infinity (X) and ultimately to extend our discussion on the Gauss-Green formulas.
引用
收藏
页码:883 / 946
页数:64
相关论文
共 50 条
  • [1] Pairings between bounded divergence-measure vector fields and BV functions
    Crasta, Graziano
    De Cicco, Virginia
    Malusa, Annalisa
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) : 787 - 810
  • [2] Representation formulas for pairings between divergence-measure fields and BV functions
    Comi, Giovanni E.
    Crasta, Graziano
    De Cicco, Virginia
    Malusa, Annalisa
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (01)
  • [3] An extension of the pairing theory between divergence-measure fields and BV functions
    Crasta, Graziano
    De Cicco, Virginia
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) : 2605 - 2635
  • [4] Traces and Extensions of Bounded Divergence-Measure Fields on Rough Open Sets
    Chen, Gui-Qiang
    Li, Qinfeng
    Torres, Monica
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (01) : 229 - 264
  • [5] REMARKS ON THE THEORY OF THE DIVERGENCE-MEASURE FIELDS
    Frid, Hermano
    QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (03) : 579 - 596
  • [6] A note on the extension of BV functions in metric measure spaces
    Baldi, Annalisa
    Montefalcone, Francescopaolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 197 - 208
  • [7] ROUGH TRACES OF BV FUNCTIONS IN METRIC MEASURE SPACES
    Buffa, Vito
    Miranda Jr, Michele
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 309 - 333
  • [8] BV Functions and Nonlocal Functionals in Metric Measure Spaces
    Lahti, Panu
    Pinamonti, Andrea
    Zhou, Xiaodan
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [9] Divergence-measure fields and hyperbolic conservation laws
    Chen, GQ
    Frid, H
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (02) : 89 - 118
  • [10] On the theory of divergence-measure fields and its applications
    Chen, GQ
    Frid, H
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2001, 32 (03): : 401 - 433