Super W1+∞ n-Algebra in the Supersymmetric Landau Problem

被引:0
|
作者
Zhang, Chun-Hong [1 ]
Ding, Lu [2 ]
Yan, Zhao-Wen [3 ]
Wu, Ke [1 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
conformal and W symmetry; n-algebra; supersymmetric Landau problem; W-INFINITY-ALGEBRA; SYSTEM; LIE;
D O I
10.1088/0253-6102/67/6/648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the super n-bracket built from associative operator products. Since the super n-bracket with n even satisfies the so-called generalized super Jacobi identity, we deal with the n odd case and give the generalized super Bremner identity. For the infinite conserved operators in the supersymmetric Landau problem, we derive the super W1+infinity n-algebra which satisfies the generalized super Jacobi and Bremner identities for the n even and odd cases, respectively. Moreover the super W1+infinity sub-2n-algebra is also given.
引用
收藏
页码:648 / 654
页数:7
相关论文
共 50 条
  • [41] N=2 SUPER-W-3((2)) ALGEBRA IN SUPERFIELDS
    IVANOV, E
    KRIVONOS, S
    SORIN, A
    [J]. MODERN PHYSICS LETTERS A, 1995, 10 (32) : 2439 - 2453
  • [42] POLYAKOV CONSTRUCTION OF THE N=2 SUPER-W3 ALGEBRA
    LU, H
    POPE, CN
    ROMANS, LJ
    SHEN, X
    WANG, XJ
    [J]. PHYSICS LETTERS B, 1991, 264 (1-2) : 91 - 100
  • [43] Currents and super-operator product expansions of N=4 super-W algebra
    Benhamou, N
    Lhallabi, T
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (09) : 2263 - 2303
  • [44] Currents and Super-Operator Product Expansionsof N = 4 Super-W Algebra
    N. Benhamou
    T. Lhallabi
    [J]. International Journal of Theoretical Physics, 2000, 39 : 2263 - 2303
  • [45] W1+∞ 3-algebra and the higher-order nonlinear Schrodinger equations in optical fiber
    Wang, Xiao-Li
    Chen, Min-Ru
    Mei, Jian-Qin
    Yan, Zhao-Wen
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 65 : 161 - 172
  • [46] The N=1 algebra W∞[μ] and its truncations
    Candu, Constantin
    Vollenweider, Carl
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [47] Quantum N=2 super-W-3((2)) algebra in superspace
    Ahn, C
    Ivanov, E
    Krivonos, S
    Sorin, A
    [J]. MODERN PHYSICS LETTERS A, 1996, 11 (21) : 1705 - 1712
  • [48] FREE FIELD REALIZATION OF N = 2 SUPER-W(3) ALGEBRA
    ITO, K
    [J]. PHYSICS LETTERS B, 1993, 304 (3-4) : 271 - 277
  • [49] THE SUPER KP ORIGIN OF THE SUPER W(1+INFINITY) ALGEBRA AND ITS TOPOLOGICAL VERSION
    YU, F
    [J]. NUCLEAR PHYSICS B, 1992, 375 (01) : 173 - 192
  • [50] On super-Jordanian Uh(sl(N|1)) algebra
    Abdesselam, B
    Chakrabarti, A
    Chakrabarti, R
    Yanallah, A
    Zahaf, MB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8307 - 8319