W1+∞ 3-algebra and the higher-order nonlinear Schrodinger equations in optical fiber

被引:0
|
作者
Wang, Xiao-Li [1 ,2 ]
Chen, Min-Ru [3 ]
Mei, Jian-Qin [4 ]
Yan, Zhao-Wen [5 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Sci, Jinan 250353, Shandong, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
[4] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[5] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
基金
美国国家科学基金会;
关键词
W1+infinity 3-algebra; The higher-order nonlinear Schrodinger; equation; Optical fiber; KP HIERARCHY; HAMILTONIAN-STRUCTURE; LAX TRIPLE;
D O I
10.1016/j.cnsns.2018.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In terms of W1+infinity 3-algebra, the generalized Nambu-Poisson evolution equations involving two Hamiltonians are constructed. Given the different Hamiltonian pairs, the higher-order nonlinear Schrodinger equations are obtained. Meanwhile, on the basis of the Maxwell equations, the higher-order nonlinear Schrodinger equations in optical fiber are derived in detail. Furthermore, the relations between the higher-order nonlinear Schrodinger equations in optical fiber and the higher-order nonlinear Schrodinger equations based on the W1+infinity 3-algebra are investigated. The bright soliton, dark soliton and the periodic traveling wave solutions of the higher-order nonlinear Schrodinger equation based on the W1+infinity 3-algebra are also derived. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [1] On W1+∞ 3-algebra and integrable system
    Chen, Min-Ru
    Wang, Shi-Kun
    Wang, Xiao-Li
    Wu, Ke
    Zhao, Wei-Zhong
    [J]. NUCLEAR PHYSICS B, 2015, 891 : 655 - 675
  • [2] Integrable coupling of optical waves in higher-order nonlinear Schrodinger equations
    Park, QH
    Shin, HJ
    Kim, J
    [J]. PHYSICS LETTERS A, 1999, 263 (1-2) : 91 - 97
  • [3] Nondegenerate solitons for coupled higher-order nonlinear Schrodinger equations in optical fibers
    Cai, Yue-Jin
    Wu, Jian-Wen
    Hu, Lang-Tao
    Lin, Ji
    [J]. PHYSICA SCRIPTA, 2021, 96 (09)
  • [4] Optical soliton solutions of the generalized higher-order nonlinear Schrodinger equations and their applications
    Arshad, M.
    Seadawy, Aly R.
    Lu, Dianchen
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (11)
  • [5] Higher-order nonlinear Schrodinger equations with singular data
    Hayashi, Nakao
    Naumkin, Pavel I.
    Ogawa, Takayoshi
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) : 263 - 276
  • [6] Modulation instability in higher-order nonlinear Schrodinger equations
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    Chang, Wonkeun
    [J]. CHAOS, 2018, 28 (12)
  • [7] Conservation laws in higher-order nonlinear Schrodinger equations
    Kim, J
    Park, QH
    Shin, HJ
    [J]. PHYSICAL REVIEW E, 1998, 58 (05): : 6746 - 6751
  • [8] Pyragas method and chaos in higher-order nonlinear Schrodinger equation in an optical fiber
    Bahar, M.
    Mouhammadoul, B. B.
    Tiofack, C. G. L.
    Alim
    Mohamadou, A.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (06):
  • [9] Rogue wave solutions for a higher-order nonlinear Schrodinger equation in an optical fiber
    Lan, Zhong-Zhou
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [10] Stochastic dark solitons for a higher-order nonlinear Schrodinger equation in the optical fiber
    Zhong, Hui
    Tian, Bo
    Li, Min
    Sun, Wen-Rong
    Zhen, Hui-Ling
    [J]. JOURNAL OF MODERN OPTICS, 2013, 60 (19) : 1644 - 1651