COMMUTING AUTOMORPHISMS OF THE GROUP CONSISTING OF THE UNIT UPPER TRIANGULAR MATRICES

被引:0
|
作者
Chen, Zhengxin [1 ,2 ]
Zhu, Chundan [1 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 03期
基金
中国国家自然科学基金;
关键词
Unit upper triangular matrices; commuting automorphisms; matrix groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group, an automorphism phi : G -> G is called a commuting automorphism, if for all x is an element of G, phi(x)x = x phi(x). Let U-n (F) be the group consisting of all n x n unit upper triangular matrices over a field F with characteristic char(F) not equal 2. In this paper, we prove that if n >= 4, a map phi : U-n (F) -> U-n (F) is a commuting automorphism of U-n (F) if and only if it is a central automorphism of U-n(F). Moreover, the set of the commuting automorphisms of U-n(F) is a normal subgroup of the automorphism group Aut(U-n(F)).
引用
收藏
页码:647 / 658
页数:12
相关论文
共 50 条