COMMUTING AUTOMORPHISMS OF THE GROUP CONSISTING OF THE UNIT UPPER TRIANGULAR MATRICES

被引:0
|
作者
Chen, Zhengxin [1 ,2 ]
Zhu, Chundan [1 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
来源
HOUSTON JOURNAL OF MATHEMATICS | 2019年 / 45卷 / 03期
基金
中国国家自然科学基金;
关键词
Unit upper triangular matrices; commuting automorphisms; matrix groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group, an automorphism phi : G -> G is called a commuting automorphism, if for all x is an element of G, phi(x)x = x phi(x). Let U-n (F) be the group consisting of all n x n unit upper triangular matrices over a field F with characteristic char(F) not equal 2. In this paper, we prove that if n >= 4, a map phi : U-n (F) -> U-n (F) is a commuting automorphism of U-n (F) if and only if it is a central automorphism of U-n(F). Moreover, the set of the commuting automorphisms of U-n(F) is a normal subgroup of the automorphism group Aut(U-n(F)).
引用
收藏
页码:647 / 658
页数:12
相关论文
共 50 条
  • [31] Bijective maps on unit upper triangular matrices preserving commutators
    Wang, Dengyin
    Zhai, Huixiang
    Chen, Meilin
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (01): : 25 - 40
  • [33] Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings
    Cao, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 329 (1-3) : 175 - 187
  • [34] Commuting Upper Triangular Binary Morphisms
    Honkala, Juha
    FUNDAMENTA INFORMATICAE, 2024, 191 (3-4) : 285 - 298
  • [35] Automorphism Group of Generalized Cayley Graph of Upper Triangular Matrices
    Wang, Denying
    Zhou, Jinming
    Ma, Xiaobin
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) : 4125 - 4137
  • [36] The group of commutativity preserving maps on strictly upper triangular matrices
    Dengyin Wang
    Min Zhu
    Jianling Rou
    Czechoslovak Mathematical Journal, 2014, 64 : 335 - 350
  • [37] The group of commutativity preserving maps on strictly upper triangular matrices
    Wang, Dengyin
    Zhu, Min
    Rou, Jianling
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (02) : 335 - 350
  • [38] Group gradings on the Lie and Jordan algebras of upper triangular matrices
    Hitomi E.
    Koshlukov P.
    Yasumura F.
    São Paulo Journal of Mathematical Sciences, 2017, 11 (2) : 326 - 347
  • [39] Commuting maps on rank k triangular matrices
    Chooi, Wai Leong
    Kwa, Kiam Heong
    Tan, Li Yin
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05): : 1021 - 1030
  • [40] Commuting maps on rank one triangular matrices
    Chooi, W. L.
    Mutalib, M. H. A.
    Tan, L. Y.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 626 : 34 - 55