A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing

被引:26
|
作者
Pelta, Ran [1 ]
Carmon, Nimrod [1 ]
Ben-Dor, Eyal [1 ]
机构
[1] Tel Aviv Univ, Fac Exact Sci, Porter Sch Environm & Earth Sci, IL-6697801 Tel Aviv, Israel
关键词
Petroleum hydrocarbons; Soils; hyperspectral; Imaging spectroscopy; Chemometrics; Mapping; Machine learning; Oil spill; Pollution; VEGETATION STRESS; VISUALIZATION; HYDROCARBONS; SEEPAGE;
D O I
10.1016/j.jag.2019.101901
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
One of the most ubiquitous and detrimental types of environmental contamination in the world is crude oil pollution. When released into either the aquatic or terrestrial environments, this pollution can negatively impact flora and fauna, as well as human health. Hence, a rapid and affordable spatial assessment of the pollution is favored to limit the spill's effects. Using airborne hyperspectral remote sensing (HRS) for crude oil detection in terrestrial areas has been investigated in previous studies, which mainly relied on heavily oiled artificial samples. These studies and others based their methodologies on the premise that the spectral features of petroleum hydrocarbon (PHC) are clearly observable, which might not be true in all cases. In this study, we aimed at assessing the true potential of using HRS for terrestrial oil spill mapping in a real disaster site in southern Israel, where laboratory and controlled conditions do not apply. Using the AISA SPECIM Fenixl K sensor, we collected airborne image of the study site and analyzed the data with advanced data mining techniques. Various challenges and limitations arose from the airborne HRS image being taken two and a half years after the crude oil had been released into the environment and exposed to the surface. Here, no spectral features of PHC were detectable in the spectrum, preventing the use of PHC indices and spectral methods developed by others. Nevertheless, by using standardization techniques, vicarious band selection, dimension reduction, multivariate calibration, and supervised machine-learning, we were able to successfully distinguish between contaminated pixels from non-contaminated ones. Classification accuracy metrics of overall accuracy, sensitivity, specificity, and Kappa yielded good results of 0.95, 0.95, 0.95 and 0.9, respectively, for cross-validation, and 0.93, 0.91, 0.94 and 0.85, for the validation dataset. Classified image and test scenes also showed strong agreement with an orthophoto image taken several days after the disaster, when the pollution was clearly visible. Thus, we conclude that HRS technology can detect PHC traces in an oil spill site, even under the most challenging conditions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Drone remote sensing of wheat N using hyperspectral sensor and machine learning
    Sahoo, Rabi N.
    Rejith, R. G.
    Gakhar, Shalini
    Ranjan, Rajeev
    Meena, Mahesh C.
    Dey, Abir
    Mukherjee, Joydeep
    Dhakar, Rajkumar
    Meena, Abhishek
    Daas, Anchal
    Babu, Subhash
    Upadhyay, Pravin K.
    Sekhawat, Kapila
    Kumar, Sudhir
    Kumar, Mahesh
    Chinnusamy, Viswanathan
    Khanna, Manoj
    PRECISION AGRICULTURE, 2024, 25 (02) : 704 - 728
  • [2] Drone remote sensing of wheat N using hyperspectral sensor and machine learning
    Rabi N. Sahoo
    R. G. Rejith
    Shalini Gakhar
    Rajeev Ranjan
    Mahesh C. Meena
    Abir Dey
    Joydeep Mukherjee
    Rajkumar Dhakar
    Abhishek Meena
    Anchal Daas
    Subhash Babu
    Pravin K. Upadhyay
    Kapila Sekhawat
    Sudhir Kumar
    Mahesh Kumar
    Viswanathan Chinnusamy
    Manoj Khanna
    Precision Agriculture, 2024, 25 : 704 - 728
  • [3] A New Machine Learning Approach in Detecting the Oil Palm Plantations Using Remote Sensing Data
    Xu, Kaibin
    Qian, Jing
    Hu, Zengyun
    Duan, Zheng
    Chen, Chaoliang
    Liu, Jun
    Sun, Jiayu
    Wei, Shujie
    Xing, Xiuwei
    REMOTE SENSING, 2021, 13 (02) : 1 - 17
  • [4] Geological Applications of Machine Learning in Hyperspectral Remote Sensing Data
    Tse, C. H.
    Li, Yi-liang
    Lam, Edmund Y.
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS VIII, 2015, 9405
  • [5] Forecasting Crude Oil Price Using SARIMAX Machine Learning Approach
    Tahseen Mohammad, Farah
    Krupasindhu Panigrahi, Shrikant
    2023 International Conference on Sustainable Islamic Business and Finance, SIBF 2023, 2023, : 131 - 135
  • [6] Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach
    Fuentes, Sigfredo
    Tongson, Eden Jane
    De Bei, Roberta
    Viejo, Claudia Gonzalez
    Ristic, Renata
    Tyerman, Stephen
    Wilkinson, Kerry
    SENSORS, 2019, 19 (15)
  • [7] Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing
    Liu, Kai
    Wang, Yufeng
    Peng, Zhiqing
    Xu, Xinxin
    Liu, Jingjing
    Song, Yuehui
    Di, Huige
    Hua, Dengxin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4897 - 4921
  • [8] UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring
    Parsons, Mark
    Bratanov, Dmitry
    Gaston, Kevin J.
    Gonzalez, Felipe
    SENSORS, 2018, 18 (07)
  • [9] UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning
    Abdulridha, Jaafar
    Batuman, Ozgur
    Ampatzidis, Yiannis
    REMOTE SENSING, 2019, 11 (11)
  • [10] Oil Film Classification Using Deep Learning-Based Hyperspectral Remote Sensing Technology
    Zhu, Xueyuan
    Li, Ying
    Zhang, Qiang
    Liu, Bingxin
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (04)