UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring

被引:46
|
作者
Parsons, Mark [1 ]
Bratanov, Dmitry [2 ]
Gaston, Kevin J. [3 ,4 ]
Gonzalez, Felipe [5 ]
机构
[1] Queensland Univ Technol, 2 George St, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Inst Future Environm, Res Engn Facil, 2 George St, Brisbane, Qld 4000, Australia
[3] Univ Exeter, Environm & Sustainabil Inst, Penryn TR10 9FE, Cornwall, England
[4] Wissenschaftskolleg Berlin, Inst Adv Study, Wallotstr 19, D-14193 Berlin, Germany
[5] Queensland Univ Technol, Inst Future Environm Robot & Autonomous Syst, 2 George St, Brisbane, Qld 4000, Australia
关键词
in-water survey; UAS; hyperspectral camera; machine learning; image segmentation; support vector machines (SVM); drones; CLASSIFICATION; BATHYMETRY; IMAGERY;
D O I
10.3390/s18072026
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recent advances in unmanned aerial system (UAS) sensed imagery, sensor quality/size, and geospatial image processing can enable UASs to rapidly and continually monitor coral reefs, to determine the type of coral and signs of coral bleaching. This paper describes an unmanned aerial vehicle (UAV) remote sensing methodology to increase the efficiency and accuracy of existing surveillance practices. The methodology uses a UAV integrated with advanced digital hyperspectral, ultra HD colour (RGB) sensors, and machine learning algorithms. This paper describes the combination of airborne RGB and hyperspectral imagery with in-water survey data of several types in-water survey of coral under diverse levels of bleaching. The paper also describes the technology used, the sensors, the UAS, the flight operations, the processing workflow of the datasets, the methods for combining multiple airborne and in-water datasets, and finally presents relevant results of material classification. The development of the methodology for the collection and analysis of airborne hyperspectral and RGB imagery would provide coral reef researchers, other scientists, and UAV practitioners with reliable data collection protocols and faster processing techniques to achieve remote sensing objectives.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing
    Liu, Kai
    Wang, Yufeng
    Peng, Zhiqing
    Xu, Xinxin
    Liu, Jingjing
    Song, Yuehui
    Di, Huige
    Hua, Dengxin
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4897 - 4921
  • [2] Geological Applications of Machine Learning in Hyperspectral Remote Sensing Data
    Tse, C. H.
    Li, Yi-liang
    Lam, Edmund Y.
    [J]. IMAGE PROCESSING: MACHINE VISION APPLICATIONS VIII, 2015, 9405
  • [3] Hyperspectral remote sensing and radiative transfer simulation as a tool for monitoring coral reef health
    Yamano, H
    Tamura, M
    Kunii, Y
    Hidaka, M
    [J]. MARINE TECHNOLOGY SOCIETY JOURNAL, 2002, 36 (01) : 4 - 13
  • [4] A LIGHTWEIGHT PAYLOAD FOR HYPERSPECTRAL REMOTE SENSING USING SMALL UAVS
    Fortuna, Joao
    Johansen, Tor Arne
    [J]. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [5] Machine Learning Optimised Hyperspectral Remote Sensing Retrieves Cotton Nitrogen Status
    Marang, Ian J.
    Filippi, Patrick
    Weaver, Tim B.
    Evans, Bradley J.
    Whelan, Brett M.
    Bishop, Thomas F. A.
    Murad, Mohammed O. F.
    Al-Shammari, Dhahi
    Roth, Guy
    [J]. REMOTE SENSING, 2021, 13 (08)
  • [6] Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images
    Li, Yanyi
    Wang, Jian
    Gao, Tong
    Sun, Qiwen
    Zhang, Liguo
    Tang, Mingxiu
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020 (2020)
  • [7] Hyperspectral remote sensing image classification with information discriminative extreme learning machine
    Yan, Deqin
    Chu, Yonghe
    Li, Lina
    Liu, Deshan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (05) : 5803 - 5818
  • [8] Drone remote sensing of wheat N using hyperspectral sensor and machine learning
    Sahoo, Rabi N.
    Rejith, R. G.
    Gakhar, Shalini
    Ranjan, Rajeev
    Meena, Mahesh C.
    Dey, Abir
    Mukherjee, Joydeep
    Dhakar, Rajkumar
    Meena, Abhishek
    Daas, Anchal
    Babu, Subhash
    Upadhyay, Pravin K.
    Sekhawat, Kapila
    Kumar, Sudhir
    Kumar, Mahesh
    Chinnusamy, Viswanathan
    Khanna, Manoj
    [J]. PRECISION AGRICULTURE, 2024, 25 (02) : 704 - 728
  • [9] Hyperspectral remote sensing image classification with information discriminative extreme learning machine
    Deqin Yan
    Yonghe Chu
    Lina Li
    Deshan Liu
    [J]. Multimedia Tools and Applications, 2018, 77 : 5803 - 5818
  • [10] Drone remote sensing of wheat N using hyperspectral sensor and machine learning
    Rabi N. Sahoo
    R. G. Rejith
    Shalini Gakhar
    Rajeev Ranjan
    Mahesh C. Meena
    Abir Dey
    Joydeep Mukherjee
    Rajkumar Dhakar
    Abhishek Meena
    Anchal Daas
    Subhash Babu
    Pravin K. Upadhyay
    Kapila Sekhawat
    Sudhir Kumar
    Mahesh Kumar
    Viswanathan Chinnusamy
    Manoj Khanna
    [J]. Precision Agriculture, 2024, 25 : 704 - 728