UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning

被引:146
|
作者
Abdulridha, Jaafar [1 ]
Batuman, Ozgur [2 ]
Ampatzidis, Yiannis [1 ]
机构
[1] Univ Florida, IFAS, Southwest Florida Res & Educ Ctr, Agr & Biol Engn Dept, 2685 SR 29 North, Immokalee, FL 34142 USA
[2] Univ Florida, IFAS, Southwest Florida Res & Educ Ctr, Dept Plant Pathol, 2685 SR 29 North, Immokalee, FL 34142 USA
关键词
citrus; canker; disease detection; hyperspectral imaging; neural networks; vegetation indices; AXONOPODIS PV.-CITRI; LAUREL WILT DISEASE; LEAF-AREA INDEX; VEGETATION INDEXES; SPECTRAL REFLECTANCE; CHLOROPHYLL CONTENT; NITROGEN STATUS; SPECTROSCOPY; ALGORITHMS; PREDICTION;
D O I
10.3390/rs11111373
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A remote sensing technique was developed to detect citrus canker in laboratory conditions and was verified in the grove by utilizing an unmanned aerial vehicle (UAV). In the laboratory, a hyperspectral (400-1000 nm) imaging system was utilized for the detection of citrus canker in several disease development stages (i.e., asymptomatic, early, and late symptoms) on Sugar Belle leaves and immature (green) fruit by using two classification methods: (i) radial basis function (RBF) and (ii) K nearest neighbor (KNN). The same imaging system mounted on an UAV was used to detect citrus canker on tree canopies in the orchard. The overall classification accuracy of the RBF was higher (94%, 96%, and 100%) than the KNN method (94%, 95%, and 96%) for detecting canker in leaves. Among the 31 studied vegetation indices, the water index (WI) and the Modified Chlorophyll Absorption in Reflectance Index (ARI and TCARI 1) more accurately detected canker in laboratory and in orchard conditions, respectively. Immature fruit was not a reliable tissue for early detection of canker. However, the proposed technique successfully distinguished the late stage canker-infected fruit with 92% classification accuracy. The UAV-based technique achieved 100% classification accuracy for identifying healthy and canker-infected trees.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Utilizing UAV-based hyperspectral imaging to detect surficial explosive ordnance
    Tuohy M.
    Baur J.
    Steinberg G.
    Pirro J.
    Mitchell T.
    Nikulin A.
    Frucci J.
    De Smet T.S.
    Leading Edge, 2023, 42 (02): : 98 - 102
  • [2] Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence
    Arnpatzidis, Yiannis
    Partel, Victor
    Meyering, Bo
    Albrecht, Ute
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
  • [3] Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing
    Lan Y.
    Zhu Z.
    Deng X.
    Lian B.
    Huang J.
    Huang Z.
    Hu J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (03): : 92 - 100
  • [4] A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level
    Yu, Run
    Luo, Youqing
    Zhou, Quan
    Zhang, Xudong
    Wu, Dewei
    Ren, Lili
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 101
  • [5] Ground-Truthing of UAV-Based Remote Sensing Data of Citrus Plants
    Bhandari, Subodh
    Raheja, Amar
    Chaichi, Mohammad R.
    Green, Robert L.
    Do, Dat
    Ansari, Mehdi
    Pham, Frank
    Wolf, Joseph
    Sherman, Tristan
    Espinas, Antonio
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING III, 2018, 10664
  • [6] Yield Estimation of Wheat Lines Based on UAV Hyperspectral Remote Sensing and Machine Learning
    Qi, Hao
    Lu, Liangjie
    Sun, Haifang
    Li, Si
    Li, Tiantian
    Hou, Liang
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (07): : 260 - 269
  • [7] Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing
    Liu, Kai
    Wang, Yufeng
    Peng, Zhiqing
    Xu, Xinxin
    Liu, Jingjing
    Song, Yuehui
    Di, Huige
    Hua, Dengxin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4897 - 4921
  • [8] Research and application of UAV-based hyperspectral remote sensing for smart city construction
    Yang, Boxiong
    Wang, Shunmin
    Li, Shelei
    Zhou, Bo
    Zhao, Fujun
    Ali, Faizan
    He, Hui
    Cognitive Robotics, 2022, 2 : 255 - 266
  • [9] UC-HSI: UAV-Based Crop Hyperspectral Imaging Datasets and Machine Learning Benchmark Results
    Sankararao, Adduru U. G.
    Rajalakshmi, P.
    Choudhary, Sunita
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [10] Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data
    Tao, Huilin
    Feng, Haikuan
    Xu, Liangji
    Miao, Mengke
    Long, Huiling
    Yue, Jibo
    Li, Zhenhai
    Yang, Guijun
    Yang, Xiaodong
    Fan, Lingling
    SENSORS, 2020, 20 (05)